Product Description
Factory Price 2-in-1 15kw Silent Pm VSD Rotary Screw Air Compressor Laser Cutting Gas Power
 
Factory Price 2-in-1 15kw Silent Pm VSD Rotary Screw Air Compressor Laser Cutting Gas Power
Advantages:
Low noise
Compact Unit Structure and Low Noise Design
  
Low energy consumption
No friction loss, high mechanical efficiency, no resistance loss of suction and exhaust valves
  
Easy to use
Can be unattended all day work, no-load automatic start, full-load automatic shutdown.
  
Strong stability
The exhaust and air pressure are stable under long-term working environment. There is no crash and the failure rate is low.
  
Product Details
Simple and Easy More materials are needed to install
Product Parameters
High Pressure 16bar Combined Silent Laser Cutting Screw Air Compressor Technical Parameters
| 
 Model  | 
 KW  | 
 Pressure(bar)  | 
 FAD(L/Min)  | 
 Air Outlet Pipe Diameter  | 
 Dimension (mm)  | 
   Weight  | 
 Air Tank Volume(L)  | 
| 
 MQ-7.5V  | 
 7.5  | 
 8-13  | 
 0.8-1.1  | 
 Rp1/2  | 
 1700*800*1500  | 
 420  | 
 350  | 
| 
 MQ-11V  | 
 11  | 
 8-13  | 
 0.84-1.6  | 
 Rp1  | 
 1700*800*1700  | 
 490  | 
 400  | 
| 
 MQ-15V  | 
 15  | 
 8-13  | 
 1.4-2.4  | 
 Rp1  | 
 1700*800*1700  | 
 510  | 
 400  | 
| 
 MQ-22V  | 
 22  | 
 8-13  | 
 2.2-3.6  | 
 Rp1-1/4  | 
 1700*800*1800  | 
 610  | 
 500  | 
| 
 MQ-30V  | 
 30  | 
 8-13  | 
 2.93-5.0  | 
 Rp1-1/4  | 
 1700*800*1800  | 
 650  | 
 500  | 
Company Profile
Established in 2012,Muqi Air Compressor Co.,Ltd is a manufacturer which specialized in R&D, design,produce,sale and after-sales service of air compressor.We are located in HangZhou city, ZheJiang province. With the convenient transportation , you are welcomed to visit us at anytime.
As 1 of compressor experts in north of China,Muqi has a complete production line,that is we have nearly all kinds of air compressor,such as screw compressor,portable air compressor,industrial air compressor,rotary compressor,oil-less air compressor,two stage air compressor,permanent magnet variable speed/frequency air compressor,energy save air compressor,variable flow air compressor,permanent magnet synchronous compressor,etc.They are widely used in machinery, light industry, textile, food, petroleum, chemical industry, metallurgy, mining, electric power, urban construction, medical research and national defense research and other industries.
About our team,we have R&D department with 15 engineers and technicians,we can offer the solutions for your specific requirements,not only for different voltage(V) and frequency(Hz),besides,there are sales department,production department,QC department,logistic department.All departments cooperate together to make sure to delivery on time and qualified. 
Certifications
Air compressor service
- After-sale Service
• Any questions or requests before, during or after sales, we would like to help you any time and will find you the best solution in 24 hours.
• Warranty: One year for the whole machine 2 year for air end , and spare parts will be provided with best price. - Special Customized Service
1) Full OEM
• Quantity: at least 5 pcs
• In this plan, we will do all the changes (Color, name plate and logo) as your need, and will not charge extra fee.
2) Half OEM
• Quantity: no limit
• Under this program, we can make the necessary alteration (name plate and logo) but we will charge some extra fee for the name plate, as the name plate factory has the MOQ.
3) Logo OEM
• Quantity: no limit
• Only the logo will be changed to yours, and no extra fee will be charged 
FAQ
- Q:Our voltage is different from China,can we use your air compressor?
 
          A:Sure,voltage and color are customizable,380V/3Ph/50HZ/60HZ, 220V/3Ph/50HZ/60HZ,  440V/3Ph/50HZ/60HZ, 415V/3Ph/50HZ/60HZ or as your required. 
   
2.Q:What’s the warranty terms of your screw air compressor?
       A: 1 year 
   
3.Q: What service will u provide if there is problem during the warranty?
      A:We have after-sales service team.During the warranty period, we will provide free parts replacement and technical guidance no matter what model of air compressor. 
   
4.Q:Can you accept OEM orders?
     A: Yes, with a professional design team, OEM orders are very welcome. 
   
5.Q:What’s your delivery time?
     A: Usually,380V 50HZ we can ship within 7-15 days. Other electric or other colors we will ship within 25-30 days 
   
   6.Q: what’s your payment term?
     A: Generally,it’s T/T. Also we could accept USD, RMB, Euro and other currency 
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
What Is the Noise Level of Gas Air Compressors?
The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:
1. Compressor Design:
The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.
2. Engine Type:
The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.
3. Operating Conditions:
The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.
4. Noise-Reducing Features:
Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.
5. Manufacturer Specifications:
Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.
6. Distance and Location:
The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.
It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.
Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.
.webp)
Can Gas Air Compressors Be Used for Natural Gas Compression?
Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:
1. Different Compressed Gases:
Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.
2. Safety Considerations:
Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.
3. Equipment Compatibility:
Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.
4. Efficiency and Performance:
Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.
5. Regulatory Compliance:
Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.
6. Industry Standards and Practices:
The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.
In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.
.webp)
How Do You Choose the Right Size Gas Air Compressor for Your Needs?
Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:
1. Required Airflow:
Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.
2. Operating Pressure:
Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.
3. Duty Cycle:
Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.
4. Tank Size:
The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.
5. Power Source:
Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.
6. Portability:
Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.
7. Noise Level:
If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.
8. Manufacturer Recommendations:
Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.
By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.


editor by lmc 2024-11-19
China Professional AC Power 7.5-50HP Oil Free Electric Gas Air Compressor Best Price VSD Rotary Screw Air Compressor best air compressor
Product Description
OFAC oil-free screw air compressor used Japanese Mitsui’s original technology, who is the only maintenance service provider in China.
| TECHNICAL DATA | 
||||||||||
| Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Size | Weight (kgs) | Lubricating Water(L) | Filter Element (B)-(Z) | Dimension LxWxH (mm) | |
| OF-7.5F | 7.5kw | 10hp | 8 | 1.0 | 60 | RP 3/4 | 400 | 22 | (25cm) 1 | 1000*720*1050 | 
| OF-11F | 11kw | 15hp | 8 | 1.6 | 63 | 460 | 1156*845*1250 | |||
| OF-15F | 15kw | 20hp | 8 | 2.5 | 65 | RP 1 | 620 | 28 | (50cm) 1 | 1306*945*1260 | 
| OF-18F | 18.5kw | 25hp | 8 | 3.0 | 67 | 750 | 33 | 1520*1060*1390 | ||
| OF-22F | 22kw | 30hp | 8 | 3.6 | 68 | 840 | 33 | 1520*1060*1390 | ||
| OF-30F | 30kw | 40hp | 8 | 5.0 | 69 | RP 11/4 | 1050 | 66 | (25cm) 5 | 1760*1160*1490 | 
| OF-37F | 37kw | 50hp | 8 | 6.2 | 71 | 1100 | 1760*1160*1490 | |||
| OF-45S | 45kw | 60hp | 8 | 7.3 | 74 | RP 11/2 | 1050 | 88 | 1760*1160*1490 | |
| OF-45F | 45kw | 60hp | 8 | 7.3 | 74 | 1200 | 1760*1160*1490 | |||
| OF-55S | 55kw | 75hp | 8 | 10 | 74 | RP 2 | 1250 | 110 | (50cm) 5 | 1900*1250*1361 | 
| OF-55F | 55kw | 75hp | 8 | 10 | 74 | 2200 | (50cm) 7 | 2350*1250*1880 | ||
| OF-75S | 75kw | 100hp | 8 | 13 | 75 | 1650 | (50cm) 5 | 1900*1250*1361 | ||
| OF-75F | 75kw | 100hp | 8 | 13 | 75 | 2500 | (50cm) 7 | 2550*1620*1880 | ||
| OF-90S | 90kw | 125hp | 8 | 15 | 76 | 2050 | (50cm) 5 | 1900*1250*1361 | ||
| OF-90F | 90kw | 125hp | 8 | 15 | 76 | 2650 | (50cm) 7 | 2550*1620*1880 | ||
| OF-110S | 110kw | 150hp | 8 | 20 | 78 | DN 65 | 2550 | 130 | (50cm) 12 | 2200*1600*1735 | 
| OF-110F | 110kw | 150hp | 8 | 20 | 78 | 3500 | 130 | 3000*1700*2250 | ||
| OF-132S | 132kw | 175hp | 8 | 23 | 80 | 2700 | 130 | 2200*1600*2250 | ||
| OF-160S | 160kw | 220hp | 8 | 26 | 82 | 2900 | 165 | 2200*1600*2250 | ||
| OF-185S | 185kw | 250hp | 8 | 30 | 83 | DN 100 | 3300 | 180 | (50cm) 22 | 2860*1800*1945 | 
| OF-200S | 200kw | 270hp | 8 | 33 | 83 | 3500 | 2860*1800*1945 | |||
| OF-220S | 220kw | 300hp | 8 | 36 | 85 | 4500 | 2860*2000*2300 | |||
| OF-250S | 250kw | 340hp | 8 | 40 | 85 | 4700 | 2860*2000*2300 | |||
| OF-315S | 315kw | 480hp | 8 | 50 | 90 | 5000 | 2860*2000*2300 | |||
F– air cooling method S– water cooling method
                            
The brand “OFAC, OFC” specializes in the R&D, manufacturing, sales and service of compressors, oil-free compressors and air end, special gas compressors, various air compressors and post-processing equipment, providing customers with High-quality, environmentally friendly and efficient air system solutions and fast and stable technical services. 
FAQ
Q1: Warranty terms of your machine?
A1: Two year warranty for the machine and technical support according to your needs.
Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.
Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden box.
Q4: Can you use our brand?
A4: Yes, OEM is available.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within 3-15 days. Other  voltage or other color we will delivery within 30-45 days.
Q6: How Many Staff Are There In your Factory?
A6: About 100.
 
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.
Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in HangZhou, ZheJiang ,  China.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Online Support | 
|---|---|
| Warranty: | 2 Years | 
| Lubrication Style: | Oil-free | 
| Customization: | 
 
                                            Available
                                         
| 
  | 
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
 Estimated freight per unit.                                                       | 
                                         about shipping cost and estimated delivery time.  | 
|---|
| Payment Method: | 
                                    
 
 
 
 
 
 
 
  | 
|---|---|
| 
                                     Initial Payment Full Payment  | 
| Currency: | US$ | 
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. | 
|---|
.webp)
Can Gas Air Compressors Be Used in Cold Weather Conditions?
Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:
1. Cold Start-Up:
In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.
2. Fuel Type:
Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.
3. Lubrication:
Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.
4. Moisture Management:
In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.
5. Protection from Freezing:
In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.
6. Monitoring Performance:
Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.
By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.
.webp)
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
.webp)
What Fuels Are Commonly Used in Gas Air Compressors?
Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:
1. Gasoline:
Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.
2. Diesel:
Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.
3. Natural Gas:
Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.
4. Propane:
Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.
5. Biogas:
In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.
It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.


editor by CX 2024-02-03
China OEM Hot Sale Oil-Free Rotary Screw Gas Air Compressor Large Air Displacement mini air compressor
Product Description
OFAC oil-free screw air compressor used Japanese Mitsui’s original technology, who is the only maintenance service provider in China.
| TECHNICAL DATA | 
||||||||||
| Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Size | Weight (kgs) | Lubricating Water(L) | Filter Element (B)-(Z) | Dimension LxWxH (mm) | |
| OF-7.5F | 7.5kw | 10hp | 8 | 1.0 | 60 | RP 3/4 | 400 | 22 | (25cm) 1 | 1000*720*1050 | 
| OF-11F | 11kw | 15hp | 8 | 1.6 | 63 | 460 | 1156*845*1250 | |||
| OF-15F | 15kw | 20hp | 8 | 2.5 | 65 | RP 1 | 620 | 28 | (50cm) 1 | 1306*945*1260 | 
| OF-18F | 18.5kw | 25hp | 8 | 3.0 | 67 | 750 | 33 | 1520*1060*1390 | ||
| OF-22F | 22kw | 30hp | 8 | 3.6 | 68 | 840 | 33 | 1520*1060*1390 | ||
| OF-30F | 30kw | 40hp | 8 | 5.0 | 69 | RP 11/4 | 1050 | 66 | (25cm) 5 | 1760*1160*1490 | 
| OF-37F | 37kw | 50hp | 8 | 6.2 | 71 | 1100 | 1760*1160*1490 | |||
| OF-45S | 45kw | 60hp | 8 | 7.3 | 74 | RP 11/2 | 1050 | 88 | 1760*1160*1490 | |
| OF-45F | 45kw | 60hp | 8 | 7.3 | 74 | 1200 | 1760*1160*1490 | |||
| OF-55S | 55kw | 75hp | 8 | 10 | 74 | RP 2 | 1250 | 110 | (50cm) 5 | 1900*1250*1361 | 
| OF-55F | 55kw | 75hp | 8 | 10 | 74 | 2200 | (50cm) 7 | 2350*1250*1880 | ||
| OF-75S | 75kw | 100hp | 8 | 13 | 75 | 1650 | (50cm) 5 | 1900*1250*1361 | ||
| OF-75F | 75kw | 100hp | 8 | 13 | 75 | 2500 | (50cm) 7 | 2550*1620*1880 | ||
| OF-90S | 90kw | 125hp | 8 | 15 | 76 | 2050 | (50cm) 5 | 1900*1250*1361 | ||
| OF-90F | 90kw | 125hp | 8 | 15 | 76 | 2650 | (50cm) 7 | 2550*1620*1880 | ||
| OF-110S | 110kw | 150hp | 8 | 20 | 78 | DN 65 | 2550 | 130 | (50cm) 12 | 2200*1600*1735 | 
| OF-110F | 110kw | 150hp | 8 | 20 | 78 | 3500 | 130 | 3000*1700*2250 | ||
| OF-132S | 132kw | 175hp | 8 | 23 | 80 | 2700 | 130 | 2200*1600*2250 | ||
| OF-160S | 160kw | 220hp | 8 | 26 | 82 | 2900 | 165 | 2200*1600*2250 | ||
| OF-185S | 185kw | 250hp | 8 | 30 | 83 | DN 100 | 3300 | 180 | (50cm) 22 | 2860*1800*1945 | 
| OF-200S | 200kw | 270hp | 8 | 33 | 83 | 3500 | 2860*1800*1945 | |||
| OF-220S | 220kw | 300hp | 8 | 36 | 85 | 4500 | 2860*2000*2300 | |||
| OF-250S | 250kw | 340hp | 8 | 40 | 85 | 4700 | 2860*2000*2300 | |||
| OF-315S | 315kw | 480hp | 8 | 50 | 90 | 5000 | 2860*2000*2300 | |||
F– air cooling method S– water cooling method
                           
The brand “OFAC, OFC” specializes in the R&D, manufacturing, sales and service of compressors, oil-free compressors and air end, special gas compressors, various air compressors and post-processing equipment, providing customers with High-quality, environmentally friendly and efficient air system solutions and fast and stable technical services.
FAQ
Q1: Warranty terms of your machine?
A1: Two year warranty for the machine and technical support according to your needs.
Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.
Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden box.
Q4: Can you use our brand?
A4: Yes, OEM is available.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within 3-15 days. Other  voltage or other color we will delivery within 30-45 days.
Q6: How Many Staff Are There In your Factory?
A6: About 100.
 
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.
Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in HangZhou, ZheJiang ,  China.
| After-sales Service: | Online Support | 
|---|---|
| Warranty: | 2 Years | 
| Lubrication Style: | Oil-free | 
| Customization: | 
 
                                            Available
                                         
| 
  | 
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| Shipping Cost:
 Estimated freight per unit.                                                       | 
                                         about shipping cost and estimated delivery time.  | 
|---|
| Payment Method: | 
                                    
 
 
 
 
 
 
 
  | 
|---|---|
| 
                                     Initial Payment Full Payment  | 
| Currency: | US$ | 
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. | 
|---|
.webp)
Can Gas Air Compressors Be Used in Construction Projects?
Gas air compressors are widely used in construction projects due to their portability, versatility, and ability to provide the necessary compressed air for various applications. They are an essential tool in the construction industry, enabling the efficient and effective operation of pneumatic tools and equipment. Here’s a detailed explanation of how gas air compressors are used in construction projects:
1. Powering Pneumatic Tools:
Gas air compressors are commonly used to power a wide range of pneumatic tools on construction sites. These tools include jackhammers, nail guns, impact wrenches, concrete breakers, air drills, sanders, grinders, and paint sprayers. The compressed air generated by the gas air compressor provides the necessary force and power for efficient operation of these tools, enabling tasks such as concrete demolition, fastening, surface preparation, and finishing.
2. Air Blow and Cleaning Operations:
In construction projects, there is often a need to clean debris, dust, and dirt from work areas, equipment, and surfaces. Gas air compressors are used to generate high-pressure air for air blow and cleaning operations. This helps maintain cleanliness, remove loose materials, and prepare surfaces for further work, such as painting or coating.
3. Operating Pneumatic Systems:
Gas air compressors are employed to operate various pneumatic systems in construction projects. These systems include pneumatic control devices, pneumatic cylinders, and pneumatic actuators. Compressed air from the gas air compressor is used to control the movement of equipment, such as gates, doors, and barriers, as well as to operate pneumatic lifts, hoists, and other lifting mechanisms.
4. Concrete Spraying and Shotcreting:
Gas air compressors are utilized in concrete spraying and shotcreting applications. Compressed air is used to propel the concrete mixture through a nozzle at high velocity, ensuring proper adhesion and distribution on surfaces. This technique is commonly employed in applications such as tunnel construction, slope stabilization, and repair of concrete structures.
5. Sandblasting and Surface Preparation:
In construction projects that require surface preparation, such as removing old paint, rust, or coatings, gas air compressors are often used in conjunction with sandblasting equipment. Compressed air powers the sandblasting process, propelling abrasive materials such as sand or grit onto the surface to achieve effective cleaning and preparation before applying new coatings or finishes.
6. Tire Inflation and Equipment Maintenance:
Gas air compressors are utilized for tire inflation and equipment maintenance on construction sites. They provide compressed air for inflating and maintaining proper tire pressure in construction vehicles and equipment. Additionally, gas air compressors are used for general equipment maintenance, such as cleaning, lubrication, and powering pneumatic tools for repair and maintenance tasks.
7. Portable and Remote Operations:
Gas air compressors are particularly beneficial in construction projects where electricity may not be readily available or feasible. Portable gas air compressors provide the flexibility to operate in remote locations, allowing construction crews to utilize pneumatic tools and equipment without relying on a fixed power source.
Gas air compressors are an integral part of construction projects, facilitating a wide range of tasks and enhancing productivity. Their ability to power pneumatic tools, operate pneumatic systems, and provide compressed air for various applications makes them essential equipment in the construction industry.
.webp)
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
.webp)
How Does a Gas Air Compressor Work?
A gas air compressor works by utilizing a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air can then be used for various applications. Here’s a detailed explanation of how a gas air compressor operates:
1. Gas Engine:
A gas air compressor is equipped with a gas engine as its power source. The gas engine is typically fueled by gasoline, diesel, natural gas, or propane. When the engine is started, the fuel is combusted within the engine’s cylinders, generating mechanical energy in the form of rotational motion.
2. Compressor Pump:
The gas engine drives the compressor pump through a mechanical linkage, such as a belt or direct coupling. The compressor pump is responsible for drawing in atmospheric air and compressing it to a higher pressure. There are different types of compressor pumps used in gas air compressors, including reciprocating, rotary screw, or centrifugal, each with its own operating principles.
3. Intake Stroke:
In a reciprocating compressor pump, the intake stroke begins when the piston moves downward within the cylinder. This creates a vacuum, causing the inlet valve to open and atmospheric air to be drawn into the cylinder. In rotary screw or centrifugal compressors, air is continuously drawn in through the intake port as the compressor operates.
4. Compression Stroke:
During the compression stroke in a reciprocating compressor, the piston moves upward, reducing the volume within the cylinder. This compression action causes the air to be compressed and its pressure to increase. In rotary screw compressors, two interlocking screws rotate, trapping and compressing the air between them. In centrifugal compressors, air is accelerated and compressed by high-speed rotating impellers.
5. Discharge Stroke:
Once the air is compressed, the discharge stroke begins in reciprocating compressors. The piston moves upward, further reducing the volume and forcing the compressed air out of the cylinder through the discharge valve. In rotary screw compressors, the compressed air is discharged through an outlet port as the interlocking screws continue to rotate. In centrifugal compressors, the high-pressure air is discharged from the impeller into the surrounding volute casing.
6. Pressure Regulation:
Gas air compressors often include pressure regulation mechanisms to control the output pressure of the compressed air. This can be achieved through pressure switches, regulators, or control systems that adjust the compressor’s operation based on the desired pressure setting. These mechanisms help maintain a consistent and controlled supply of compressed air for the specific application requirements.
7. Storage and Application:
The compressed air produced by the gas air compressor is typically stored in a receiver tank or used directly for applications. The receiver tank helps stabilize the pressure and provides a reservoir of compressed air for immediate use. From the receiver tank, the compressed air can be distributed through pipelines to pneumatic tools, machinery, or other devices that require the compressed air for operation.
Overall, a gas air compressor operates by using a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air is then regulated and used for various applications, providing a reliable source of power for pneumatic tools, machinery, and other equipment.


editor by CX 2023-10-16
China wholesaler 90cfm Rotary Screw Type Air Compressor for Automotive Mechanical Manufacturer with high quality
Product Description
0.5-80 M3/Min 6-40 Bar 5.5-400 Kw Electrical Stationary Industrial AC Power Direct Driven/Coupled Rotary Screw Air Compressors Advantages
1.DENAIR Enhanced energy saving screw air compressor reached the super energy saving level
 
2.Energy Efficient Index 1(EEI 1) approved according to GB19153-2009, the energy consumption is 10%~15% lower than EEI 2.
 
3.CHINAMFG air compressor design with 72 types of technology patent, real bigger air flow 
 
4.State-of-the-art screw element, original Germany CHINAMFG air end, ladvanced SAP profile design, superior Sweden CHINAMFG element bearings
 
5.CHINAMFG air compressdor dopts world-renowned components, such as Schneider electronics from France, DENAIR filters from Germany, Danfoss pressure sensor from Denmark, etc. contribute to guarantee the compressor longer service life.
 
6.Smart touch screen design and 0 pressure drop design
 
7.Higher efficiency cooling system and electrical motor
 
8.Stainless steel pipes, reasonable inner design, ensure long service life without maintenance.
Technical Parameters Of Energy Saving Rotary Screw Air Compressor
| Model | Maxinmum working | Capacity(FAD)* | Installed motor power | Driving mode& | Noise | Dimensions(mm) | Weight | Air outlet | |||||||
| pressure | 50 HZ | 60 HZ | Cooling method | level** | pipe diameter | ||||||||||
| bar(g) | psig | m3/min | cfm | m3/min | cfm | kw | hp | dB(A) | L | W | H | kg | |||
| DA-5 | 7.5 | 109 | 0.80 | 28 | 0.80 | 28 | 5.5 | 7.5 | Belt Driven | 75 | 900 | 600 | 860 | 315 | G3/4″ | 
| 8.5 | 123 | 0.78 | 28 | 0.78 | 28 | 5.5 | 7.5 | Air Cooling | 75 | 900 | 600 | 860 | |||
| DA-7 | 7.5 | 109 | 1.09 | 39 | 1.09 | 39 | 7.5 | 10 | 75 | 900 | 600 | 860 | 315 | G3/4″ | |
| 8.5 | 123 | 1.07 | 38 | 1.07 | 38 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| 10.5 | 152 | 0.92 | 32 | 0.91 | 32 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| 13.0 | 189 | 0.73 | 26 | 0.72 | 26 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| DA-11 | 7.5 | 109 | 1.66 | 59 | 1.66 | 59 | 11 | 15 | 75 | 1230 | 650 | 900 | 324 | G3/4″ | |
| 8.5 | 123 | 1.64 | 58 | 1.64 | 58 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| 10.5 | 152 | 1.45 | 51 | 1.45 | 51 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| 13.0 | 189 | 1.13 | 40 | 1.12 | 40 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| DA-15 | 7.5 | 109 | 2.54 | 90 | 2.53 | 89 | 15 | 20 | Direct Driven | 75 | 1465 | 990 | 1345 | 453 | G1-1/4″ | 
| 8.5 | 123 | 2.51 | 88 | 2.50 | 88 | 15 | 20 | Air Cooling | 75 | 1465 | 990 | 1345 | |||
| 10.5 | 152 | 1.97 | 70 | 1.86 | 66 | 15 | 20 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 1.91 | 67 | 1.83 | 65 | 15 | 20 | 75 | 1465 | 990 | 1345 | ||||
| DA-18 | 7.5 | 109 | 3.04 | 107 | 3.65 | 129 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | 453 | G1-1/4″ | |
| 8.5 | 123 | 3.03 | 107 | 3.63 | 128 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| 10.5 | 152 | 3.00 | 106 | 2.38 | 84 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 1.91 | 67 | 2.36 | 83 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| DA-22 | 7.5 | 109 | 3.57 | 126 | 3.65 | 129 | 22 | 30 | 75 | 1465 | 990 | 1345 | 477 | G1-1/4″ | |
| 8.5 | 123 | 3.55 | 125 | 3.63 | 128 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| 10.5 | 152 | 3.00 | 106 | 2.38 | 84 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 2.97 | 105 | 2.36 | 83 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| DA-30 | 7.5 | 109 | 5.28 | 187 | 4.49 | 159 | 30 | 40 | 85 | 1600 | 1250 | 1550 | 682 | G1-1/2″ | |
| 8.5 | 123 | 5.26 | 186 | 4.48 | 158 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 5.21 | 184 | 4.47 | 158 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 3.45 | 122 | 3.58 | 126 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| DA-37 | 7.5 | 109 | 6.54 | 231 | 6.33 | 224 | 37 | 50 | 85 | 1600 | 1250 | 1550 | 728 | G1-1/2″ | |
| 8.5 | 123 | 6.52 | 230 | 6.30 | 222 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 5.21 | 184 | 4.47 | 158 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 5.16 | 182 | 4.43 | 156 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| DA-45 | 7.5 | 109 | 7.67 | 271 | 7.79 | 275 | 45 | 60 | 85 | 1600 | 1250 | 1550 | 728 | G1-1/2″ | |
| 8.5 | 123 | 7.62 | 269 | 7.76 | 574 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 6.46 | 228 | 6.24 | 220 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 6.41 | 226 | 4.44 | 157 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| DA-55 | 7.5 | 109 | 9.76 | 345 | 9.14 | 323 | 55 | 75 | 85 | 1876 | 1326 | 1700 | 1310 | G2″ | |
| 8.5 | 123 | 9.67 | 342 | 9.06 | 320 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| 10.5 | 152 | 7.53 | 266 | 7.74 | 273 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| 13.0 | 189 | 7.40 | 261 | 6.30 | 222 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| DA-75 | 7.5 | 109 | 14.21 | 502 | 11.72 | 414 | 75 | 100 | 85 | 1876 | 1326 | 1700 | 1325 | G2″ | |
| 8.5 | 123 | 12.55 | 443 | 11.63 | 411 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| 10.5 | 152 | 9.51 | 336 | 11.43 | 404 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| 13.0 | 189 | 9.23 | 326 | 8.75 | 309 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| DA-90(W) | 7.5 | 109 | 16.62 | 587 | 17.01 | 601 | 90 | 120 | Direct Driven | 72 | 2450 | 1800 | 1700 | 2450 | DN80 | 
| 8.5 | 123 | 16.37 | 578 | 16.82 | 594 | 90 | 120 | Air Cooling Or | 72 | 2450 | 1800 | 1700 | |||
| 10.5 | 152 | 14.21 | 502 | 14.87 | 525 | 90 | 120 | Water Cooling | 72 | 2450 | 1800 | 1700 | |||
| 13.0 | 189 | 11.77 | 416 | 11.27 | 398 | 90 | 120 | 72 | 2450 | 1800 | 1700 | ||||
| DA-110(W) | 7.5 | 109 | 20.13 | 711 | 19.10 | 674 | 110 | 150 | 72 | 2450 | 1800 | 1700 | 2500 | DN80 | |
| 8.5 | 123 | 20.05 | 708 | 19.06 | 673 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| 10.5 | 152 | 16.33 | 576 | 17.01 | 601 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| 13.0 | 189 | 14.11 | 498 | 14.68 | 518 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| DA-132(W) | 7.5 | 109 | 22.85 | 807 | 24.37 | 861 | 132 | 175 | 72 | 2450 | 1800 | 1700 | 2600 | DN80 | |
| 8.5 | 123 | 22.73 | 802 | 24.23 | 856 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| 10.5 | 152 | 19.88 | 702 | 18.95 | 669 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| 13.0 | 189 | 16.51 | 583 | 16.82 | 594 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| DA-160(W) | 7.5 | 109 | 26.92 | 950 | 27.90 | 985 | 160 | 215 | 78 | 2650 | 1700 | 1850 | 3200 | DN80 | |
| 8.5 | 123 | 26.86 | 949 | 27.76 | 980 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| 10.5 | 152 | 22.44 | 792 | 23.97 | 846 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| 13.0 | 189 | 19.63 | 693 | 18.82 | 664 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| DA-185(W) | 7.5 | 109 | 28.89 | 1571 | 30.53 | 1078 | 185 | 250 | 78 | 2650 | 1700 | 1850 | 3300 | DN80 | |
| 8.5 | 123 | 28.84 | 1018 | 30.44 | 1075 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| 10.5 | 152 | 25.11 | 886 | 27.46 | 970 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| 13.0 | 189 | 22.08 | 780 | 23.69 | 836 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| DA-200(W) | 7.5 | 109 | 31.88 | 1126 | 30.53 | 1078 | 200 | 270 | 80 | 3000 | 1950 | 2030 | 4750 | DN100 | |
| 8.5 | 123 | 31.82 | 1124 | 30.44 | 1075 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 28.48 | 1006 | 30.22 | 1067 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 25.00 | 883 | 27.07 | 956 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| DA-220(W) | 7.5 | 109 | 36.20 | 1278 | 37.22 | 1314 | 220 | 300 | 80 | 3000 | 1950 | 2030 | 4800 | DN100 | |
| 8.5 | 123 | 36.15 | 1276 | 37.17 | 1312 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 31.71 | 1120 | 33.25 | 1174 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 28.48 | 1006 | 27.07 | 956 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| DA-250(W) | 7.5 | 109 | 43.31 | 1529 | 42.87 | 1514 | 250 | 350 | 80 | 3000 | 1950 | 2030 | 4850 | DN100 | |
| 8.5 | 123 | 43.24 | 1527 | 41.30 | 1458 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 36.03 | 1272 | 37.04 | 1308 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 31.55 | 1114 | 33.15 | 1170 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| DA-280(W) | 7.5 | 109 | 46.59 | 1645 | 47.16 | 1665 | 280 | 375 | 85 | 3700 | 2300 | 2450 | 5200 | DN125 | |
| 8.5 | 123 | 46.53 | 1643 | 45.64 | 1612 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| 10.5 | 152 | 42.95 | 1516 | 42.56 | 1503 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| 13.0 | 189 | 35.89 | 1267 | 36.95 | 1305 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| DA-315(W) | 7.5 | 109 | 53.16 | 1877 | 50.88 | 1797 | 315 | 425 | 85 | 3700 | 2300 | 2450 | 6000 | DN125 | |
| 8.5 | 123 | 52.63 | 1858 | 50.83 | 1795 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| 10.5 | 152 | 43.05 | 1520 | 46.27 | 1634 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| 13.0 | 189 | 42.93 | 1516 | 40.32 | 1424 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| DA-355(W) | 7.5 | 109 | 63.37 | 2238 | 58.12 | 2052 | 355 | 475 | 85 | 4500 | 2500 | 2450 | 7000 | DN125 | |
| 8.5 | 123 | 63.16 | 2230 | 56.54 | 1997 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| 10.5 | 152 | 52.63 | 1858 | 51.57 | 1821 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| 13.0 | 189 | 43.79 | 1546 | 45.35 | 1601 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| DA-400(W) | 7.5 | 109 | 70.99 | 2507 | 61.72 | 2179 | 400 | 550 | 85 | 4500 | 2500 | 2450 | 8000 | DN125 | |
| 8.5 | 123 | 70.64 | 2494 | 59.72 | 2109 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
| 10.5 | 152 | 52.63 | 1858 | 56.52 | 1996 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
| 13.0 | 189 | 46.34 | 1636 | 51.35 | 1813 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
***) EEI 1- Energy Effiency Index 1, which refers to enhanced energy saving series
Specifications are subject to change without notice.
DENAIR Factory & Product Lines
DENAIR Exhibition
We carefully selected for you the classic case
Enhanced Energy Saving Air Compressor in Oman
Project Name: Sandblasting in Muscat, Oman.
Product Name: 75KW 100HP Enhanced Energy Saving screw air compressor EEI 1 (Energy Efficiency Index 1) with air dryer, air receiver tank and air filters.
Model No. & Qty: DA-75+ x 1.
Working Time: From June, 2016 till now
Event: In June, 2015, 1 set of CHINAMFG enhanced energy saving air compressor system was installed in Muscat Oman. This is the first project finished by CHINAMFG distributor in Oman. Our partner Mr. Hari shared the photos at working site to us as a good starting. That means more and more CHINAMFG energy saving solutions will contribute to the industries in Oman in the near future. CHINAMFG air compressor factory and air compressor distributor will try the best to provide top quality products, cost effective solution and excellent service for local users in Oman. In order to ensure the most professional service, the distributor plans to send 2 service engineers to CHINAMFG factory in ZheJiang for training and learnin. We will update the news at that time.
FAQ
Q1: Are you factory or trade company?  
A1: We are factory.
Q2: What the exactly address of your factory? 
A2:No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
. 
Q3: Warranty terms of your air compressor machine? 
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the air compressor? 
A4: Yes, of course.
Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome.
| Lubrication Style: | Lubricated | 
|---|---|
| Cooling System: | Air Cooling | 
| Cylinder Position: | Vertical | 
| Structure Type: | Closed Type | 
| Installation Type: | Stationary Type | 
| Type: | Twin-Screw Compressor | 
| Customization: | 
 
                                            Available
                                         
| 
  | 
|---|
.webp)
What are the differences between stationary and portable air compressors?
Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:
1. Mobility:
The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.
2. Power Source:
Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.
3. Tank Capacity:
Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.
4. Performance and Output:
The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.
5. Noise Level:
Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.
6. Price and Cost:
Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.
When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.
.webp)
How does the horsepower of an air compressor affect its capabilities?
The horsepower of an air compressor is a crucial factor that directly impacts its capabilities and performance. Here’s a closer look at how the horsepower rating affects an air compressor:
Power Output:
The horsepower rating of an air compressor indicates its power output or the rate at which it can perform work. Generally, a higher horsepower rating translates to a greater power output, allowing the air compressor to deliver more compressed air per unit of time. This increased power output enables the compressor to operate pneumatic tools and equipment that require higher air pressure or greater airflow.
Air Pressure:
The horsepower of an air compressor is directly related to the air pressure it can generate. Air compressors with higher horsepower ratings have the capacity to produce higher air pressures. This is particularly important when operating tools or machinery that require specific air pressure levels to function optimally. For example, heavy-duty pneumatic tools like jackhammers or impact wrenches may require higher air pressure to deliver the necessary force.
Air Volume:
In addition to air pressure, the horsepower of an air compressor also affects the air volume or airflow it can provide. Higher horsepower compressors can deliver greater volumes of compressed air, measured in cubic feet per minute (CFM). This increased airflow is beneficial when using pneumatic tools that require a continuous supply of compressed air, such as paint sprayers or sandblasters.
Duty Cycle:
The horsepower rating of an air compressor can also influence its duty cycle. The duty cycle refers to the amount of time an air compressor can operate continuously before it needs to rest and cool down. Higher horsepower compressors often have larger and more robust components, allowing them to handle heavier workloads and operate for longer periods without overheating. This is particularly important in demanding applications where continuous and uninterrupted operation is required.
Size and Portability:
It’s worth noting that the horsepower rating can also affect the physical size and portability of an air compressor. Higher horsepower compressors tend to be larger and heavier due to the need for more substantial motors and components to generate the increased power output. This can impact the ease of transportation and maneuverability, especially in portable or mobile applications.
When selecting an air compressor, it is essential to consider the specific requirements of your intended applications. Factors such as desired air pressure, airflow, duty cycle, and portability should be taken into account. It’s important to choose an air compressor with a horsepower rating that aligns with the demands of the tools and equipment you plan to operate, ensuring optimal performance and efficiency.
Consulting the manufacturer’s specifications and guidelines can provide valuable information on how the horsepower rating of an air compressor corresponds to its capabilities and suitability for different tasks.
.webp)
What is the purpose of an air compressor?
An air compressor serves the purpose of converting power, typically from an electric motor or an engine, into potential energy stored in compressed air. It achieves this by compressing and pressurizing air, which can then be used for various applications. Here’s a detailed explanation of the purpose of an air compressor:
1. Powering Pneumatic Tools: One of the primary uses of an air compressor is to power pneumatic tools. Compressed air can be used to operate a wide range of tools, such as impact wrenches, nail guns, paint sprayers, sanders, and drills. The compressed air provides the necessary force and energy to drive these tools, making them efficient and versatile.
2. Supplying Clean and Dry Air: Air compressors are often used to supply clean and dry compressed air for various industrial processes. Many manufacturing and production operations require a reliable source of compressed air that is free from moisture, oil, and other contaminants. Air compressors equipped with appropriate filters and dryers can deliver high-quality compressed air for applications such as instrumentation, control systems, and pneumatic machinery.
3. Inflating Tires and Sports Equipment: Air compressors are commonly used for inflating tires, whether it’s for vehicles, bicycles, or sports equipment. They provide a convenient and efficient method for quickly filling tires with the required pressure. Air compressors are also used for inflating sports balls, inflatable toys, and other similar items.
4. Operating HVAC Systems: Air compressors play a crucial role in the operation of heating, ventilation, and air conditioning (HVAC) systems. They provide compressed air for controlling and actuating dampers, valves, and actuators in HVAC systems, enabling precise regulation of air flow and temperature.
5. Assisting in Industrial Processes: Compressed air is utilized in various industrial processes. It can be used for air blow-off applications, cleaning and drying parts, powering air-operated machinery, and controlling pneumatic systems. Air compressors provide a reliable and efficient source of compressed air that can be tailored to meet the specific requirements of different industrial applications.
6. Supporting Scuba Diving and Breathing Systems: In scuba diving and other breathing systems, air compressors are responsible for filling diving tanks and supplying breathable air to divers. These compressors are designed to meet strict safety standards and deliver compressed air that is free from contaminants.
Overall, the purpose of an air compressor is to provide a versatile source of compressed air for powering tools, supplying clean air for various applications, inflating tires and sports equipment, supporting industrial processes, and facilitating breathing systems in specific contexts.


editor by CX 2023-10-11
China manufacturer Car AC Oil Pump Piston Direct Mini Screw Portable Rotary Industrial Dental Air Compressor with Great quality
Product Description
| Power: | 2000w | Voltage: | 220V | 
| Exhaust Pressure: | 0.8Mpa | Current: | 7.5A | 
| Frequency: | 50HZ | Revolving Speed: | 2850rpm | 
| Volume of Gas Storage Tank: | 30L | Cylinder: | 1x47mm | 
Scope of application:
Using for Pushing Pneumatic Nail Gun, Air Screw , Spray Painting Gun to work, also use to miniature instrument, blowing dust, Air inflation for small car and so on.
Product  Feature:
- High Power, high efficiency, low energy, high reliability.
 - Piston Ring: New ECO circle, low friction coefficient, Auto lubricating system.
 - Cylinder Liner: Surface hardening, deplete hardness, Accelerate the heat transfer, long using time.
 - Suction and exhaust valve: Using advanced foreign technology.
 - Multiple Pressure: Overload protection
 
| Lubrication Style: | Lubricated | 
|---|---|
| Cooling System: | Air Cooling | 
| Cylinder Arrangement: | Duplex Arrangement | 
| Cylinder Position: | Horizontal | 
| Structure Type: | Open Type | 
| Revolving Speed: | 2850rpm | 
| Samples: | 
 
                                        US$ 80/Piece 
1 Piece(Min.Order)                                         |  | 
|---|
| Customization: | 
 
                                            Available
                                         
| 
  | 
|---|
.webp)
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
.webp)
What safety precautions should be taken when working with compressed air?
Working with compressed air requires adherence to certain safety precautions to prevent accidents and ensure the well-being of individuals involved. Here are some important safety measures to consider:
1. Personal Protective Equipment (PPE):
Wear appropriate PPE, including safety goggles or a face shield to protect eyes from flying debris or particles, hearing protection to reduce noise exposure, and gloves to safeguard hands from potential hazards.
2. Compressed Air Storage:
Avoid storing compressed air in containers that are not designed for this purpose, such as soda bottles or makeshift containers. Use approved and properly labeled air storage tanks or cylinders that can handle the pressure and are regularly inspected and maintained.
3. Pressure Regulation:
Ensure that the air pressure is regulated to a safe level suitable for the equipment and tools being used. High-pressure air streams can cause serious injuries, so it is important to follow the manufacturer’s recommendations and never exceed the maximum allowable pressure.
4. Air Hose Inspection:
Regularly inspect air hoses for signs of damage, such as cuts, abrasions, or leaks. Replace damaged hoses immediately to prevent potential accidents or loss of pressure.
5. Air Blowguns:
Exercise caution when using air blowguns. Never direct compressed air towards yourself or others, as it can cause eye injuries, hearing damage, or dislodge particles that may be harmful if inhaled. Always point blowguns away from people or any sensitive equipment or materials.
6. Air Tool Safety:
Follow proper operating procedures for pneumatic tools. Ensure that tools are in good working condition, and inspect them before each use. Use the appropriate accessories, such as safety guards or shields, to prevent accidental contact with moving parts.
7. Air Compressor Maintenance:
Maintain air compressors according to the manufacturer’s guidelines. Regularly check for leaks, clean or replace filters, and drain moisture from the system. Proper maintenance ensures the safe and efficient operation of the compressor.
8. Training and Education:
Provide adequate training and education to individuals working with compressed air. Ensure they understand the potential hazards, safe operating procedures, and emergency protocols. Encourage open communication regarding safety concerns and implement a culture of safety in the workplace.
9. Lockout/Tagout:
When performing maintenance or repairs on compressed air systems, follow lockout/tagout procedures to isolate the equipment from energy sources and prevent accidental startup. This ensures the safety of the individuals working on the system.
10. Proper Ventilation:
Ensure proper ventilation in enclosed areas where compressed air is used. Compressed air can displace oxygen, leading to a potential risk of asphyxiation. Adequate ventilation helps maintain a safe breathing environment.
By adhering to these safety precautions, individuals can minimize the risks associated with working with compressed air and create a safer work environment.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-10-10
China best High Lower Pressure Rotary Water Lubrication Laser Cutting Oilless Oil-Free Screw Scroll Piston Air Compressor for Dental Hospital Bus Truck Blowing Bottle mini air compressor
Product Description
High Lower Pressure Rotary Water Lubrication Laser Cutting Oilless Oil-Free Screw Scroll Piston Air Compressor for Dental Hospital Bus Truck Blowing Bottle
Product Description
Main uses and guarantees:
Energy saving: energy saving more than 15% compared with dry oil-free compressor.
Environment protection: no using any lubricate oil to avoid environment pollution.
Reliability: absolutely guarantee oil-free.
Because the purified water takes part into the compressing process to seal, cool and lubricate, it increases efficiency. With the same motor power, comparing with dry oil-free air compress, there is 15% more air production of oil-free screw air compressor of water lubrication, it reduces the energy consumption greatly. The consumption material of oil-free screw air compressor is only water, air filter and water filter, the maintenance cost is very low.
100% oil-free compressed air, 100% purified compressed air, 100% no oil pollution risk.
In the process of food and drink industry, medical industry, packing industry, electronic manufacture, painting industry, powder coating industry and textile manufacturing, it must avoid any risk of oil pollution, otherwise it would cause serious consequences such as manufacture damages and stop, brand and credit losing. CMN oil-free screw air compressor takes water for lubrication, there is not any lubricate oil in the air end, and at the meantime, because the purified water clean the air, the compressor air is absolutely clear and not any pollution.
Guarantee: High precision, high wear resistance, low noise, smooth and steady, high strength
Our OEM/ODM company provides you what best matches your needs
Our product can be adapted. Please give us the required model name so we can provide you the most accurate quotation.
This chart if for reference, if you need different features, provide us all relevant details for your project and we will be glad to help you finding the product matching your need at the best quality with the lowest price.
Please note the price and the MOQ may vary regarding the product you chose: do not hesitate to contact us to know more!
Main Features
1) Simple structure in linear type ,easy in installation and maintation. 
2) Adopting advanced world famous brand components in pneumatic parts ,electric parts and operation parts. 
3) High pressure double crank to control the die opening and closing. 
4) Running in a high automatization and intellectualization,no pollution 
5) Apply a linker to connect with the air conveyor ,which can directly inline with filling machine . 
Company Profile
In the early stage, we carried out technical cooperation with Simeon of France on high-end oil-free compressors and gradually established a complete set of innovation and R&D systems in China.
In 2006, our company successfully developed the Simeon water lubricated oil-free screw air compressor with independent patent technology, which was listed as the national key new product trial production plan, becoming the first enterprise in China to successfully develop the water lubricated oil-free screw air compressor, and the first enterprise in China to master the manufacturing technology of the water lubricated screw oil-free compressor.
Due to the low exhaust temperature of the water lubricated oil-free machine and the corrosion resistance of the stainless steel host, it is very suitable to compress flammable, explosive and corrosive gases. On the basis of the water lubricated oil-free machine, our company has successfully developed biogas compressor, coal seam gas compressor, and special gas compressor for nitrogen, carbon dioxide, oxygen, formaldehyde, hydrogen and other processes. It also fills the international gap that there is no CHINAMFG for process gas compressor.
With quality as the basic requirement and energy conservation and environmental protection as the guiding ideology, Simeon will further develop special compressors with high-tech content. After years of development, the Simeon screw air compressor manufactured by Jieneng Company has been widely used in medicine, food, petrochemical, metallurgy, chemical industry, machinery, electronics, hydropower, national defense and other industries and fields, and its products are widely distributed all over the world and are welcomed by users.
Certifications
| After-sales Service: | Installation Guide | 
|---|---|
| Warranty: | 6 Years | 
| Lubrication Style: | Oil-free | 
| Cooling System: | Water Cooling | 
| Power Source: | AC Power | 
| Cylinder Position: | Horizontal | 
| Samples: | 
 
                                        US$ 999/Piece 
1 Piece(Min.Order)                                         |  | 
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
 - Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
 - Verify that the compressor’s power switch or control panel is turned on.
 
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
 - Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
 - Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
 
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
 - Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
 - Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
 
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
 - Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
 - Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
 
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
 - Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
 - Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
 
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
 - Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
 - Verify that the compressor is not being operated in an excessively hot environment.
 - Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
 - Consider using a thermal overload protector to prevent the motor from overheating.
 
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-10-09
China wholesaler 60HP 45kw Inverter CHINAMFG Gas Powered Rotary Screw Air Compressor air compressor repair near me
Product Description
Permanent Magnet Frequency Conversion Screw Air Compressor :
       1.Permanent magnet motor and the compressor airend shaft integrally embedded using direct structure, more compact, the transmission efficiency of 100%
       2.No Motor Bearing: Eliminates Motor Bearing Fault Points
       3.Equipped with High-efficiency Permanent Magnet Motor, More Energy Saving
       4.Small Motor, Typically About 1/3 of an Ordinary FM Motor Size, Easy Removal
       5.Permanent magnet synchronous motor, no loss of magnetism at 120ºC, service life over 15 years
       6.The latest generation intelligent touchscreen controller:The latest touch screen interface allows simple and intelligent control of the compressor. Pressure and scheduling time can be easily programmed, allowing you to automatically start and stop the compressor to match the production time. (Configurable remote operation and real-time monitoring functions)
| Model | Motor Power | Working Pressure | Capacity | Lubricating oil quantity (L)  | 
Driven Method | Cooling Method | Noise (dB)  | 
Dimension(mm) | Net Weight | Air Outlet Pipe Diameter | ||
| kw/hp | bar | m3/min | L*W*H | KGS | ||||||||
| SGPM08 | 7.5/10 | 7 | 1.2 | 10 | Direct Drive | Air Cooling / Water Cooling  | 
66±2 | 900*670*850 | 220 | 1/2” | ||
| 8 | 1.1 | |||||||||||
| 10 | 0.95 | |||||||||||
| 12 | 0.8 | |||||||||||
| SGPM11 | 11/15 | 7 | 1.65 | 18 | 68±2 | 1000*750*1015 | 300 | 3/4” | ||||
| 8 | 1.5 | |||||||||||
| 10 | 1.3 | |||||||||||
| 12 | 1.1 | |||||||||||
| SGPM15 | 15/20 | 7 | 2.5 | 18 | 68±2 | 1000*750*1015 | 300 | 3/4” | ||||
| 8 | 2.3 | |||||||||||
| 10 | 2.1 | |||||||||||
| 12 | 1.9 | |||||||||||
| SGPM18 | 18.5/25 | 7 | 3.2 | 18 | 68±2 | 1130*850*1175 | 480 | 1” | ||||
| 8 | 3 | |||||||||||
| 10 | 2.7 | |||||||||||
| 12 | 2.4 | |||||||||||
| SGPM22 | 22/30 | 7 | 3.8 | 18 | 68±2 | 1130*850*1175 | 480 | 1” | ||||
| 8 | 3.6 | |||||||||||
| 10 | 3.2 | |||||||||||
| 12 | 2.7 | |||||||||||
| SGPM30 | 30/40 | 7 | 5.3 | 18 | 68±2 | 1130*850*1175 | 480 | 1” | ||||
| 8 | 5 | |||||||||||
| 10 | 4.5 | |||||||||||
| 12 | 4 | |||||||||||
| SGPM37 | 37/50 | 7 | 6.8 | 30 | 68±2 | 1250*1000*1335 | 500 | 11/2″ | ||||
| 8 | 6.2 | |||||||||||
| 10 | 5.6 | |||||||||||
| 12 | 5 | |||||||||||
| SGPM45 | 45/60 | 7 | 7.4 | 30 | 72±2 | 1250*1000*1335 | 500 | 11/2″ | ||||
| 8 | 7 | |||||||||||
| 10 | 6.2 | |||||||||||
| 12 | 5.6 | |||||||||||
| SGPM55 | 55/75 | 7 | 10 | 65 | 72±2 | 1800*1250*1670 | 1200 | 2″ | ||||
| 8 | 9.6 | |||||||||||
| 10 | 8.5 | |||||||||||
| 12 | 7.6 | |||||||||||
| SGPM75 | 75/100 | 7 | 13.4 | 65 | 72±2 | 1800*1250*1670 | 1200 | 2″ | ||||
| 8 | 12.6 | |||||||||||
| 10 | 11.2 | |||||||||||
| 12 | 10 | |||||||||||
| SGPM90 | 90/120 | 7 | 16.2 | 72 | 72±2 | 1800*1250*1670 | 1200 | 2″ | ||||
| 8 | 15 | |||||||||||
| 10 | 13.8 | |||||||||||
| 12 | 12.3 | |||||||||||
| SGPM110 | 110/150 | 7 | 21 | 90 | 72±2 | 2300*1470*1840 | 2000 | DN85 | ||||
| 8 | 19.8 | |||||||||||
| 10 | 17.4 | |||||||||||
| 12 | 14.8 | |||||||||||
| SGPM132 | 132/175 | 7 | 24.5 | 90 | 75±2 | 2300*1470*1840 | 2000 | DN85 | ||||
| 8 | 23.2 | |||||||||||
| 10 | 20.5 | |||||||||||
| 12 | 17.4 | |||||||||||
| SGPM160 | 160/200 | 7 | 28.7 | 110 | 75±2 | 2500*1470*1840 | 3200 | DN85 | ||||
| 8 | 27.6 | |||||||||||
| 10 | 24.6 | |||||||||||
| 12 | 21.5 | |||||||||||
| SGPM185 | 185/250 | 7 | 32 | 110 | 75±2 | 2500*1470*1840 | 3200 | DN85 | ||||
| 8 | 30.4 | |||||||||||
| 10 | 27.4 | |||||||||||
| 12 | 24.8 | |||||||||||
FAQ:
Q1: What is the rotor speed for the air end?
A1: 2980rmp.
Q2: What’s your lead time?
A2: usually, 5-7 days. (OEM orders: 15days)
Q3: Can you offer water cooled air compressor?
A3: Yes, we can (normally, air cooled type).
Q4: What’s the payment term?
A4: T/T, L/C, Western Union, etc. Also we could accept USD, RMB, and other currency.
Q5: Do you accept customized voltage?
A5: Yes. 380V/50Hz/3ph, 380V/60Hz/3ph, 220V/50Hz/3ph, 220V/60Hz/3ph, 440V/50Hz/3ph, 440V/60Hz/3ph, or as per your requests.
Q6: What is your warranty for air compressor?
A6: One year for the whole air compressor(not including the consumption spare parts) and technical supports can be provided according to your needs.
Q7: Can you accept OEM orders?
A7: Yes, OEM orders are warmly welcome.
Q8: How about your customer service and after-sales service?
A8: 24hrs on-line support, 48hrs problem solved promise.
Q9: Do you have spare parts in stock?
A9: Yes, we do.
Q10: What kind of initial lubrication oil you used in air compressor?
A10: TOTAL 46# mineral oil.  
| After-sales Service: | Online Technical Support | 
|---|---|
| Warranty: | 1 Year | 
| Lubrication Style: | Lubricated | 
| Cooling System: | Air Cooling | 
| Power Source: | AC Power | 
| Cylinder Position: | Vertical | 
| Customization: | 
 
                                            Available
                                         
| 
  | 
|---|
.webp)
Can Gas Air Compressors Be Used for High-Pressure Applications?
Gas air compressors can be used for high-pressure applications, but there are certain considerations to keep in mind. Here’s a detailed explanation:
Gas air compressors are available in various sizes and configurations, and their suitability for high-pressure applications depends on factors such as the compressor’s design, power output, and the specific requirements of the application. Here are some key points to consider:
1. Compressor Design:
Not all gas air compressors are designed to handle high-pressure applications. Some compressors are specifically built for low-to-medium pressure ranges, while others are designed to deliver higher pressure outputs. It is important to select a gas air compressor model that is rated for the desired pressure range. The compressor’s specifications and manufacturer’s guidelines will provide information on the maximum pressure it can generate.
2. Power Output:
The power output of a gas air compressor is a crucial factor in determining its suitability for high-pressure applications. High-pressure compressors require more power to achieve and sustain the desired pressure levels. It is important to ensure that the gas air compressor has sufficient power output to meet the demands of the specific high-pressure application.
3. Cylinder Configuration:
The cylinder configuration of the gas air compressor can also affect its ability to handle high-pressure applications. Compressors with multiple cylinders or stages are designed to generate higher pressures compared to compressors with a single cylinder. Multi-stage compressors compress the air in multiple steps, allowing for higher pressure ratios.
4. Safety Considerations:
High-pressure applications require careful attention to safety considerations. Gas air compressors used for high-pressure applications should be equipped with appropriate safety features such as pressure relief valves, pressure gauges, and safety shut-off systems. It is crucial to follow all safety guidelines and regulations to ensure safe operation.
5. Maintenance and Inspection:
Regular maintenance and inspection are essential for gas air compressors used in high-pressure applications. High-pressure operation can put additional stress on the compressor components, and proper maintenance helps ensure optimal performance and safety. Regular inspections and adherence to maintenance schedules will help identify and address any potential issues before they become major problems.
6. Application-specific Considerations:
Each high-pressure application may have specific requirements and considerations. It is important to evaluate factors such as the required pressure level, duty cycle, flow rate, and any specific environmental conditions that may impact the performance of the gas air compressor. Consulting with the compressor manufacturer or a qualified professional can help determine the suitability of a gas air compressor for a particular high-pressure application.
In summary, gas air compressors can be used for high-pressure applications, provided that they are designed, rated, and configured appropriately. It is essential to consider factors such as compressor design, power output, safety features, maintenance requirements, and application-specific considerations to ensure safe and reliable operation at high pressures.
.webp)
What Is the Role of Air Receivers in Gas Air Compressor Systems?
Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:
1. Storage and Stabilization:
The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.
By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.
2. Pressure Regulation:
Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.
Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.
3. Condensate Separation:
During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.
4. Energy Efficiency:
Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.
The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.
5. Air Quality Improvement:
Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.
In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.
.webp)
How Do You Choose the Right Size Gas Air Compressor for Your Needs?
Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:
1. Required Airflow:
Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.
2. Operating Pressure:
Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.
3. Duty Cycle:
Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.
4. Tank Size:
The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.
5. Power Source:
Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.
6. Portability:
Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.
7. Noise Level:
If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.
8. Manufacturer Recommendations:
Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.
By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.


editor by CX 2023-10-09
China best Industrial Oil Injected Natural Gas Rotary Screw Type Air Compressor air compressor for sale
Product Description
0.5-80 M3/Min 6-40 Bar 5.5-400 Kw Electrical Stationary Industrial AC Power Direct Driven/Coupled Rotary Screw Air Compressors Advantages
1.DENAIR Enhanced energy saving screw air compressor reached the super energy saving level
 
2.Energy Efficient Index 1(EEI 1) approved according to GB19153-2009, the energy consumption is 10%~15% lower than EEI 2.
 
3.CHINAMFG air compressor design with 72 types of technology patent, real bigger air flow 
 
4.State-of-the-art screw element, original Germany CHINAMFG air end, ladvanced SAP profile design, superior Sweden CHINAMFG element bearings
 
5.CHINAMFG air compressdor dopts world-renowned components, such as Schneider electronics from France, DENAIR filters from Germany, Danfoss pressure sensor from Denmark, etc. contribute to guarantee the compressor longer service life.
 
6.Smart touch screen design and 0 pressure drop design
 
7.Higher efficiency cooling system and electrical motor
 
8.Stainless steel pipes, reasonable inner design, ensure long service life without maintenance.
Technical Parameters Of Energy Saving Rotary Screw Air Compressor
| Model | Maxinmum working | Capacity(FAD)* | Installed motor power | Driving mode& | Noise | Dimensions(mm) | Weight | Air outlet | |||||||
| pressure | 50 HZ | 60 HZ | Cooling method | level** | pipe diameter | ||||||||||
| bar(g) | psig | m3/min | cfm | m3/min | cfm | kw | hp | dB(A) | L | W | H | kg | |||
| DA-5 | 7.5 | 109 | 0.80 | 28 | 0.80 | 28 | 5.5 | 7.5 | Belt Driven | 75 | 900 | 600 | 860 | 315 | G3/4″ | 
| 8.5 | 123 | 0.78 | 28 | 0.78 | 28 | 5.5 | 7.5 | Air Cooling | 75 | 900 | 600 | 860 | |||
| DA-7 | 7.5 | 109 | 1.09 | 39 | 1.09 | 39 | 7.5 | 10 | 75 | 900 | 600 | 860 | 315 | G3/4″ | |
| 8.5 | 123 | 1.07 | 38 | 1.07 | 38 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| 10.5 | 152 | 0.92 | 32 | 0.91 | 32 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| 13.0 | 189 | 0.73 | 26 | 0.72 | 26 | 7.5 | 10 | 75 | 900 | 600 | 860 | ||||
| DA-11 | 7.5 | 109 | 1.66 | 59 | 1.66 | 59 | 11 | 15 | 75 | 1230 | 650 | 900 | 324 | G3/4″ | |
| 8.5 | 123 | 1.64 | 58 | 1.64 | 58 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| 10.5 | 152 | 1.45 | 51 | 1.45 | 51 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| 13.0 | 189 | 1.13 | 40 | 1.12 | 40 | 11 | 15 | 75 | 1230 | 650 | 900 | ||||
| DA-15 | 7.5 | 109 | 2.54 | 90 | 2.53 | 89 | 15 | 20 | Direct Driven | 75 | 1465 | 990 | 1345 | 453 | G1-1/4″ | 
| 8.5 | 123 | 2.51 | 88 | 2.50 | 88 | 15 | 20 | Air Cooling | 75 | 1465 | 990 | 1345 | |||
| 10.5 | 152 | 1.97 | 70 | 1.86 | 66 | 15 | 20 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 1.91 | 67 | 1.83 | 65 | 15 | 20 | 75 | 1465 | 990 | 1345 | ||||
| DA-18 | 7.5 | 109 | 3.04 | 107 | 3.65 | 129 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | 453 | G1-1/4″ | |
| 8.5 | 123 | 3.03 | 107 | 3.63 | 128 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| 10.5 | 152 | 3.00 | 106 | 2.38 | 84 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 1.91 | 67 | 2.36 | 83 | 18.5 | 25 | 75 | 1465 | 990 | 1345 | ||||
| DA-22 | 7.5 | 109 | 3.57 | 126 | 3.65 | 129 | 22 | 30 | 75 | 1465 | 990 | 1345 | 477 | G1-1/4″ | |
| 8.5 | 123 | 3.55 | 125 | 3.63 | 128 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| 10.5 | 152 | 3.00 | 106 | 2.38 | 84 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| 13.0 | 189 | 2.97 | 105 | 2.36 | 83 | 22 | 30 | 75 | 1465 | 990 | 1345 | ||||
| DA-30 | 7.5 | 109 | 5.28 | 187 | 4.49 | 159 | 30 | 40 | 85 | 1600 | 1250 | 1550 | 682 | G1-1/2″ | |
| 8.5 | 123 | 5.26 | 186 | 4.48 | 158 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 5.21 | 184 | 4.47 | 158 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 3.45 | 122 | 3.58 | 126 | 30 | 40 | 85 | 1600 | 1250 | 1550 | ||||
| DA-37 | 7.5 | 109 | 6.54 | 231 | 6.33 | 224 | 37 | 50 | 85 | 1600 | 1250 | 1550 | 728 | G1-1/2″ | |
| 8.5 | 123 | 6.52 | 230 | 6.30 | 222 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 5.21 | 184 | 4.47 | 158 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 5.16 | 182 | 4.43 | 156 | 37 | 50 | 85 | 1600 | 1250 | 1550 | ||||
| DA-45 | 7.5 | 109 | 7.67 | 271 | 7.79 | 275 | 45 | 60 | 85 | 1600 | 1250 | 1550 | 728 | G1-1/2″ | |
| 8.5 | 123 | 7.62 | 269 | 7.76 | 574 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| 10.5 | 152 | 6.46 | 228 | 6.24 | 220 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| 13.0 | 189 | 6.41 | 226 | 4.44 | 157 | 45 | 60 | 85 | 1600 | 1250 | 1550 | ||||
| DA-55 | 7.5 | 109 | 9.76 | 345 | 9.14 | 323 | 55 | 75 | 85 | 1876 | 1326 | 1700 | 1310 | G2″ | |
| 8.5 | 123 | 9.67 | 342 | 9.06 | 320 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| 10.5 | 152 | 7.53 | 266 | 7.74 | 273 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| 13.0 | 189 | 7.40 | 261 | 6.30 | 222 | 55 | 75 | 85 | 1876 | 1326 | 1700 | ||||
| DA-75 | 7.5 | 109 | 14.21 | 502 | 11.72 | 414 | 75 | 100 | 85 | 1876 | 1326 | 1700 | 1325 | G2″ | |
| 8.5 | 123 | 12.55 | 443 | 11.63 | 411 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| 10.5 | 152 | 9.51 | 336 | 11.43 | 404 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| 13.0 | 189 | 9.23 | 326 | 8.75 | 309 | 75 | 100 | 85 | 1876 | 1326 | 1700 | ||||
| DA-90(W) | 7.5 | 109 | 16.62 | 587 | 17.01 | 601 | 90 | 120 | Direct Driven | 72 | 2450 | 1800 | 1700 | 2450 | DN80 | 
| 8.5 | 123 | 16.37 | 578 | 16.82 | 594 | 90 | 120 | Air Cooling Or | 72 | 2450 | 1800 | 1700 | |||
| 10.5 | 152 | 14.21 | 502 | 14.87 | 525 | 90 | 120 | Water Cooling | 72 | 2450 | 1800 | 1700 | |||
| 13.0 | 189 | 11.77 | 416 | 11.27 | 398 | 90 | 120 | 72 | 2450 | 1800 | 1700 | ||||
| DA-110(W) | 7.5 | 109 | 20.13 | 711 | 19.10 | 674 | 110 | 150 | 72 | 2450 | 1800 | 1700 | 2500 | DN80 | |
| 8.5 | 123 | 20.05 | 708 | 19.06 | 673 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| 10.5 | 152 | 16.33 | 576 | 17.01 | 601 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| 13.0 | 189 | 14.11 | 498 | 14.68 | 518 | 110 | 150 | 72 | 2450 | 1800 | 1700 | ||||
| DA-132(W) | 7.5 | 109 | 22.85 | 807 | 24.37 | 861 | 132 | 175 | 72 | 2450 | 1800 | 1700 | 2600 | DN80 | |
| 8.5 | 123 | 22.73 | 802 | 24.23 | 856 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| 10.5 | 152 | 19.88 | 702 | 18.95 | 669 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| 13.0 | 189 | 16.51 | 583 | 16.82 | 594 | 132 | 175 | 72 | 2450 | 1800 | 1700 | ||||
| DA-160(W) | 7.5 | 109 | 26.92 | 950 | 27.90 | 985 | 160 | 215 | 78 | 2650 | 1700 | 1850 | 3200 | DN80 | |
| 8.5 | 123 | 26.86 | 949 | 27.76 | 980 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| 10.5 | 152 | 22.44 | 792 | 23.97 | 846 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| 13.0 | 189 | 19.63 | 693 | 18.82 | 664 | 160 | 215 | 78 | 2650 | 1700 | 1850 | ||||
| DA-185(W) | 7.5 | 109 | 28.89 | 1571 | 30.53 | 1078 | 185 | 250 | 78 | 2650 | 1700 | 1850 | 3300 | DN80 | |
| 8.5 | 123 | 28.84 | 1018 | 30.44 | 1075 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| 10.5 | 152 | 25.11 | 886 | 27.46 | 970 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| 13.0 | 189 | 22.08 | 780 | 23.69 | 836 | 185 | 250 | 78 | 2650 | 1700 | 1850 | ||||
| DA-200(W) | 7.5 | 109 | 31.88 | 1126 | 30.53 | 1078 | 200 | 270 | 80 | 3000 | 1950 | 2030 | 4750 | DN100 | |
| 8.5 | 123 | 31.82 | 1124 | 30.44 | 1075 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 28.48 | 1006 | 30.22 | 1067 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 25.00 | 883 | 27.07 | 956 | 200 | 270 | 80 | 3000 | 1950 | 2030 | ||||
| DA-220(W) | 7.5 | 109 | 36.20 | 1278 | 37.22 | 1314 | 220 | 300 | 80 | 3000 | 1950 | 2030 | 4800 | DN100 | |
| 8.5 | 123 | 36.15 | 1276 | 37.17 | 1312 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 31.71 | 1120 | 33.25 | 1174 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 28.48 | 1006 | 27.07 | 956 | 220 | 300 | 80 | 3000 | 1950 | 2030 | ||||
| DA-250(W) | 7.5 | 109 | 43.31 | 1529 | 42.87 | 1514 | 250 | 350 | 80 | 3000 | 1950 | 2030 | 4850 | DN100 | |
| 8.5 | 123 | 43.24 | 1527 | 41.30 | 1458 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| 10.5 | 152 | 36.03 | 1272 | 37.04 | 1308 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| 13.0 | 189 | 31.55 | 1114 | 33.15 | 1170 | 250 | 350 | 80 | 3000 | 1950 | 2030 | ||||
| DA-280(W) | 7.5 | 109 | 46.59 | 1645 | 47.16 | 1665 | 280 | 375 | 85 | 3700 | 2300 | 2450 | 5200 | DN125 | |
| 8.5 | 123 | 46.53 | 1643 | 45.64 | 1612 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| 10.5 | 152 | 42.95 | 1516 | 42.56 | 1503 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| 13.0 | 189 | 35.89 | 1267 | 36.95 | 1305 | 280 | 375 | 85 | 3700 | 2300 | 2450 | ||||
| DA-315(W) | 7.5 | 109 | 53.16 | 1877 | 50.88 | 1797 | 315 | 425 | 85 | 3700 | 2300 | 2450 | 6000 | DN125 | |
| 8.5 | 123 | 52.63 | 1858 | 50.83 | 1795 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| 10.5 | 152 | 43.05 | 1520 | 46.27 | 1634 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| 13.0 | 189 | 42.93 | 1516 | 40.32 | 1424 | 315 | 425 | 85 | 3700 | 2300 | 2450 | ||||
| DA-355(W) | 7.5 | 109 | 63.37 | 2238 | 58.12 | 2052 | 355 | 475 | 85 | 4500 | 2500 | 2450 | 7000 | DN125 | |
| 8.5 | 123 | 63.16 | 2230 | 56.54 | 1997 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| 10.5 | 152 | 52.63 | 1858 | 51.57 | 1821 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| 13.0 | 189 | 43.79 | 1546 | 45.35 | 1601 | 355 | 475 | 85 | 4500 | 2500 | 2450 | ||||
| DA-400(W) | 7.5 | 109 | 70.99 | 2507 | 61.72 | 2179 | 400 | 550 | 85 | 4500 | 2500 | 2450 | 8000 | DN125 | |
| 8.5 | 123 | 70.64 | 2494 | 59.72 | 2109 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
| 10.5 | 152 | 52.63 | 1858 | 56.52 | 1996 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
| 13.0 | 189 | 46.34 | 1636 | 51.35 | 1813 | 400 | 550 | 85 | 4500 | 2500 | 2450 | ||||
*) FAD in accordance with ISO 1217 : 2009, Annex C: Absolute intake pressure 1 bar (a), cooling and air intake temperature 20 °C
**) Noise level as per ISO 2151 and the basic standard ISO 9614-2, operation at maximum operating pressure and maximum speed; tolerance: ± 3 dB(A)
***) EEI 1- Energy Effiency Index 1, which refers to enhanced energy saving series
Specifications are subject to change without notice.
DENAIR Factory & Product Lines
DENAIR Exhibition
We carefully selected for you the classic case
Enhanced Energy Saving Air Compressor in Oman
Project Name: Sandblasting in Muscat, Oman.
Product Name: 75KW 100HP Enhanced Energy Saving screw air compressor EEI 1 (Energy Efficiency Index 1) with air dryer, air receiver tank and air filters.
Model No. & Qty: DA-75+ x 1.
Working Time: From June, 2016 till now
Event: In June, 2015, 1 set of CHINAMFG enhanced energy saving air compressor system was installed in Muscat Oman. This is the first project finished by CHINAMFG distributor in Oman. Our partner Mr. Hari shared the photos at working site to us as a good starting. That means more and more CHINAMFG energy saving solutions will contribute to the industries in Oman in the near future. CHINAMFG air compressor factory and air compressor distributor will try the best to provide top quality products, cost effective solution and excellent service for local users in Oman. In order to ensure the most professional service, the distributor plans to send 2 service engineers to CHINAMFG factory in ZheJiang for training and learnin. We will update the news at that time.
FAQ
Q1: Are you factory or trade company?  
A1: We are factory.
Q2: What the exactly address of your factory? 
A2:No. 366, YangzhuangBang Street, Pingxing Rd., Xindai Town, HangZhou, ZHangZhoug Province, China
. 
Q3: Warranty terms of your air compressor machine? 
A3: Two years warranty for the machine and technical support according to your needs.
Q4: Will you provide some spare parts of the air compressor? 
A4: Yes, of course.
Q5: How long will you take to arrange production? 
A5: 380V 50HZ we can delivery the goods within 10 days. Other electricity or other color we will delivery within 22 days
Q6: Can you accept OEM orders? 
A6: Yes, with professional design team, OEM orders are highly welcome.
| Lubrication Style: | Lubricated | 
|---|---|
| Cooling System: | Air Cooling | 
| Power Source: | AC Power | 
| Cylinder Position: | Vertical | 
| Structure Type: | Closed Type | 
| Installation Type: | Stationary Type | 
| Customization: | 
 
                                            Available
                                         
| 
  | 
|---|
How Do Gas Air Compressors Compare to Diesel Air Compressors?
When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:
1. Fuel Efficiency:
Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.
2. Power Output:
Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.
3. Cost:
In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.
4. Maintenance Requirements:
Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.
5. Environmental Impact:
When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.
6. Portability and Mobility:
Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.
It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.
In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.
Can Gas Air Compressors Be Used for Pneumatic Tools?
Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:
1. Versatile Power Source:
Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.
2. High Power Output:
Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.
3. Mobility and Portability:
Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.
4. Continuous Operation:
Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.
5. Suitable for High-Demand Applications:
Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.
6. Flexibility in Compressor Size:
Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.
7. Reduced Dependency on Electrical Infrastructure:
Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.
It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.
In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.
Are There Different Types of Gas Air Compressors Available?
Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:
1. Reciprocating Gas Air Compressors:
Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.
2. Rotary Screw Gas Air Compressors:
Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.
3. Rotary Vane Gas Air Compressors:
Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.
4. Centrifugal Gas Air Compressors:
Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.
5. Oil-Free Gas Air Compressors:
Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.
6. Portable Gas Air Compressors:
Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.
7. High-Pressure Gas Air Compressors:
High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.
8. Biogas Air Compressors:
Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.
These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.


editor by CX 2023-10-05
China Best Sales Silent Electric Screw Air Rotary Compressor Price 30 Kw 40HP 7bar 175 Cfm Oil-Free Screw Mini Gas Compressor small air compressor
Product Description
OFAC oil-free screw air compressor used Japanese Mitsui’s original technology, who is the only maintenance service provider in China.
| TECHNICAL DATA | 
||||||||||
| Model | Power | Pressure (bar) | Air Flow (m3/min) | Noise Level dBA | Outlet Size | Weight (kgs) | Lubricating Water(L) | Filter Element (B)-(Z) | Dimension LxWxH (mm) | |
| OF-7.5F | 7.5kw | 10hp | 8 | 1.0 | 60 | RP 3/4 | 400 | 22 | (25cm) 1 | 1000*720*1050 | 
| OF-11F | 11kw | 15hp | 8 | 1.6 | 63 | 460 | 1156*845*1250 | |||
| OF-15F | 15kw | 20hp | 8 | 2.5 | 65 | RP 1 | 620 | 28 | (50cm) 1 | 1306*945*1260 | 
| OF-18F | 18.5kw | 25hp | 8 | 3.0 | 67 | 750 | 33 | 1520*1060*1390 | ||
| OF-22F | 22kw | 30hp | 8 | 3.6 | 68 | 840 | 33 | 1520*1060*1390 | ||
| OF-30F | 30kw | 40hp | 8 | 5.0 | 69 | RP 11/4 | 1050 | 66 | (25cm) 5 | 1760*1160*1490 | 
| OF-37F | 37kw | 50hp | 8 | 6.2 | 71 | 1100 | 1760*1160*1490 | |||
| OF-45S | 45kw | 60hp | 8 | 7.3 | 74 | RP 11/2 | 1050 | 88 | 1760*1160*1490 | |
| OF-45F | 45kw | 60hp | 8 | 7.3 | 74 | 1200 | 1760*1160*1490 | |||
| OF-55S | 55kw | 75hp | 8 | 10 | 74 | RP 2 | 1250 | 110 | (50cm) 5 | 1900*1250*1361 | 
| OF-55F | 55kw | 75hp | 8 | 10 | 74 | 2200 | (50cm) 7 | 2350*1250*1880 | ||
| OF-75S | 75kw | 100hp | 8 | 13 | 75 | 1650 | (50cm) 5 | 1900*1250*1361 | ||
| OF-75F | 75kw | 100hp | 8 | 13 | 75 | 2500 | (50cm) 7 | 2550*1620*1880 | ||
| OF-90S | 90kw | 125hp | 8 | 15 | 76 | 2050 | (50cm) 5 | 1900*1250*1361 | ||
| OF-90F | 90kw | 125hp | 8 | 15 | 76 | 2650 | (50cm) 7 | 2550*1620*1880 | ||
| OF-110S | 110kw | 150hp | 8 | 20 | 78 | DN 65 | 2550 | 130 | (50cm) 12 | 2200*1600*1735 | 
| OF-110F | 110kw | 150hp | 8 | 20 | 78 | 3500 | 130 | 3000*1700*2250 | ||
| OF-132S | 132kw | 175hp | 8 | 23 | 80 | 2700 | 130 | 2200*1600*2250 | ||
| OF-160S | 160kw | 220hp | 8 | 26 | 82 | 2900 | 165 | 2200*1600*2250 | ||
| OF-185S | 185kw | 250hp | 8 | 30 | 83 | DN 100 | 3300 | 180 | (50cm) 22 | 2860*1800*1945 | 
| OF-200S | 200kw | 270hp | 8 | 33 | 83 | 3500 | 2860*1800*1945 | |||
| OF-220S | 220kw | 300hp | 8 | 36 | 85 | 4500 | 2860*2000*2300 | |||
| OF-250S | 250kw | 340hp | 8 | 40 | 85 | 4700 | 2860*2000*2300 | |||
| OF-315S | 315kw | 480hp | 8 | 50 | 90 | 5000 | 2860*2000*2300 | |||
F– air cooling method S– water cooling method
                           
The brand “OFAC, OFC” specializes in the R&D, manufacturing, sales and service of compressors, oil-free compressors and air end, special gas compressors, various air compressors and post-processing equipment, providing customers with High-quality, environmentally friendly and efficient air system solutions and fast and stable technical services.
FAQ
Q1: Warranty terms of your machine?
A1: Two year warranty for the machine and technical support according to your needs.
Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.
Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden box.
Q4: Can you use our brand?
A4: Yes, OEM is available.
Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within 3-15 days. Other  voltage or other color we will delivery within 30-45 days.
Q6: How Many Staff Are There In your Factory?
A6: About 100.
 
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.
Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in HangZhou, ZheJiang ,  China.
| 
                                Shipping Cost:
 Estimated freight per unit.                                               | 
To be negotiated | 
|---|
| After-sales Service: | 2 Years | 
|---|---|
| Warranty: | 2 Years | 
| Lubrication Style: | Oil-free | 
| Customization: | 
 
                                            Available
                                         
| 
  | 
|---|
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
 - Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
 - Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
 - Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
 
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
 - Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
 - Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
 
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
Can Gas Air Compressors Be Used in Agriculture?
Yes, gas air compressors can be used in various agricultural applications. Here’s a detailed explanation:
1. Pneumatic Tools and Equipment:
Gas air compressors can power a wide range of pneumatic tools and equipment used in agriculture. These tools include pneumatic drills, impact wrenches, nail guns, staplers, and pneumatic pumps. Gas air compressors provide the necessary compressed air to operate these tools, making various tasks more efficient and convenient on the farm.
2. Irrigation Systems:
Gas air compressors can be used to power irrigation systems in agriculture. They can supply compressed air to operate pneumatic valves, which control the flow of water in irrigation networks. Gas air compressors ensure reliable and efficient operation of irrigation systems, facilitating the distribution of water to crops in a controlled manner.
3. Grain Handling and Storage:
Air compressors play a vital role in grain handling and storage facilities. They are used to power aeration systems that provide airflow to grains stored in silos or bins. Aeration helps control the temperature and moisture levels, preventing spoilage and maintaining grain quality. Gas air compressors provide the airflow necessary for effective aeration in grain storage operations.
4. Cleaning and Maintenance:
In agriculture, gas air compressors are commonly used for cleaning and maintenance tasks. They can power air blowers or air guns to remove dust, debris, or chaff from machinery, equipment, or storage areas. Gas air compressors provide a high-pressure stream of compressed air, facilitating efficient cleaning and maintenance operations.
5. Livestock Operations:
Gas air compressors find applications in livestock operations as well. They can power pneumatic equipment used for animal care, such as pneumatic nail guns for building or repairing livestock enclosures, pneumatic pumps for water distribution, or pneumatic tools for general maintenance tasks.
6. Portable and Versatile:
Gas air compressors are often portable and can be easily transported around the farm, allowing flexibility in agricultural operations. Their versatility makes them suitable for various tasks, from powering tools and equipment in the field to providing compressed air for maintenance or cleaning in different farm locations.
7. Remote Locations:
In agricultural settings where access to electricity may be limited, gas air compressors offer a reliable alternative. They can be powered by gasoline or diesel engines, providing compressed air even in remote areas without electrical infrastructure.
8. Considerations:
When using gas air compressors in agriculture, it is essential to consider factors such as compressor size, capacity, and maintenance requirements. Selecting the right compressor based on the specific needs of the agricultural applications ensures optimal performance and efficiency.
In summary, gas air compressors have various applications in agriculture. They can power pneumatic tools and equipment, operate irrigation systems, facilitate grain handling and storage, assist in cleaning and maintenance tasks, support livestock operations, and offer portability and versatility. Gas air compressors contribute to increased efficiency, convenience, and productivity in agricultural operations.
How Do You Choose the Right Size Gas Air Compressor for Your Needs?
Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:
1. Required Airflow:
Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.
2. Operating Pressure:
Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.
3. Duty Cycle:
Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.
4. Tank Size:
The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.
5. Power Source:
Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.
6. Portability:
Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.
7. Noise Level:
If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.
8. Manufacturer Recommendations:
Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.
By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.


editor by CX 2023-09-29
China Standard 110kw 150HP Variable Frequency Mini Rotary Screw Air Compressor air compressor oil
Product Description
110kw 150HP Variable Frequency Rotary Screw Air Compressor
1. Pictures for GREAT PM VSD screw air compressor:
2. Products introductions &advantages for 7.5-630kw oil injected PM VSD ( permanent maget variable speed driven) Rotary Screw Air Compressor:
Motor:
1) .Oil cooling high efficiency permanent magnet motor
2). Insulation grade F, protection grade IP54,adapt to the high dusty environment. IE4 Efficiency motor efficiency.
3).Max.RPM 1500,low noise, high efficiency, better life-span.
4).Split design, easy maintenance. Easy for installation and service.
5).Without gearbox design, motor is connected directly with rotor through the coupling, high transmission efficiency.
6).Low temperature rise, independent cooling fan design, so that the motor cooling is not affected by the speed regulation.
7).With PT100 temperature protection switch to avoid high temperature degaussing.
8).Large speed range, high precision and large adjustment range.
9).Premium Magnetic material resist more than 180ºC temp
10).Fantastic Energy Saving, save up to more than 30-40%
 Inverter :
1).  dual variable frequency inverter
2).Dual variable frequency system: permanent magnet motor variable frequency -818      
  
  
  
  
| 
                                Shipping Cost:
 Estimated freight per unit.                                               | 
To be negotiated | 
|---|
| After-sales Service: | Online Techinal Support | 
|---|---|
| Warranty: | 12-24 Month | 
| Lubrication Style: | Lubricated | 
| Customization: | 
 
                                            Available
                                         
| 
  | 
|---|
.webp)
Can air compressors be used for shipbuilding and maritime applications?
Air compressors are widely used in shipbuilding and maritime applications for a variety of tasks and operations. The maritime industry relies on compressed air for numerous essential functions. Here’s an overview of how air compressors are employed in shipbuilding and maritime applications:
1. Pneumatic Tools and Equipment:
Air compressors are extensively used to power pneumatic tools and equipment in shipbuilding and maritime operations. Pneumatic tools such as impact wrenches, drills, grinders, sanders, and chipping hammers require compressed air to function. The versatility and power provided by compressed air make it an ideal energy source for heavy-duty tasks, maintenance, and construction activities in shipyards and onboard vessels.
2. Painting and Surface Preparation:
Air compressors play a crucial role in painting and surface preparation during shipbuilding and maintenance. Compressed air is used to power air spray guns, sandblasting equipment, and other surface preparation tools. Compressed air provides the force necessary for efficient and uniform application of paints, coatings, and protective finishes, ensuring the durability and aesthetics of ship surfaces.
3. Pneumatic Actuation and Controls:
Air compressors are employed in pneumatic actuation and control systems onboard ships. Compressed air is used to operate pneumatic valves, actuators, and control devices that regulate the flow of fluids, control propulsion systems, and manage various shipboard processes. Pneumatic control systems offer reliability and safety advantages in maritime applications.
4. Air Start Systems:
In large marine engines, air compressors are used in air start systems. Compressed air is utilized to initiate the combustion process in the engine cylinders. The compressed air is injected into the cylinders to turn the engine’s crankshaft, enabling the ignition of fuel and starting the engine. Air start systems are commonly found in ship propulsion systems and power generation plants onboard vessels.
5. Pneumatic Conveying and Material Handling:
In shipbuilding and maritime operations, compressed air is used for pneumatic conveying and material handling. Compressed air is utilized to transport bulk materials, such as cement, sand, and grain, through pipelines or hoses. Pneumatic conveying systems enable efficient and controlled transfer of materials, facilitating construction, cargo loading, and unloading processes.
6. Air Conditioning and Ventilation:
Air compressors are involved in air conditioning and ventilation systems onboard ships. Compressed air powers air conditioning units, ventilation fans, and blowers, ensuring proper air circulation, cooling, and temperature control in various ship compartments, cabins, and machinery spaces. Compressed air-driven systems contribute to the comfort, safety, and operational efficiency of maritime environments.
These are just a few examples of how air compressors are utilized in shipbuilding and maritime applications. Compressed air’s versatility, reliability, and convenience make it an indispensable energy source for various tasks and systems in the maritime industry.
.webp)
Can air compressors be used for medical and dental applications?
Yes, air compressors can be used for various medical and dental applications. Compressed air is a reliable and versatile utility in healthcare settings, providing power for numerous devices and procedures. Here are some common applications of air compressors in medical and dental fields:
1. Dental Tools:
Air compressors power a wide range of dental tools and equipment, such as dental handpieces, air syringes, air scalers, and air abrasion devices. These tools rely on compressed air to generate the necessary force and airflow for effective dental procedures.
2. Medical Devices:
Compressed air is used in various medical devices and equipment. For example, ventilators and anesthesia machines utilize compressed air to deliver oxygen and other gases to patients. Nebulizers, used for respiratory treatments, also rely on compressed air to convert liquid medications into a fine mist for inhalation.
3. Laboratory Applications:
Air compressors are used in medical and dental laboratories for various purposes. They power laboratory instruments, such as air-driven centrifuges and sample preparation equipment. Compressed air is also used for pneumatic controls and automation systems in lab equipment.
4. Surgical Tools:
In surgical settings, compressed air is employed to power specialized surgical tools. High-speed air-driven surgical drills, saws, and bone-cutting instruments are commonly used in orthopedic and maxillofacial procedures. Compressed air ensures precise control and efficiency during surgical interventions.
5. Sterilization and Autoclaves:
Compressed air is essential for operating sterilization equipment and autoclaves. Autoclaves use steam generated by compressed air to sterilize medical instruments, equipment, and supplies. The pressurized steam provides effective disinfection and ensures compliance with rigorous hygiene standards.
6. Dental Air Compressors:
Specialized dental air compressors are designed specifically for dental applications. These compressors have features such as moisture separators, filters, and noise reduction mechanisms to meet the specific requirements of dental practices.
7. Air Quality Standards:
In medical and dental applications, maintaining air quality is crucial. Compressed air used in healthcare settings must meet specific purity standards. This often requires the use of air treatment systems, such as filters, dryers, and condensate management, to ensure the removal of contaminants and moisture.
8. Compliance and Regulations:
Medical and dental facilities must comply with applicable regulations and guidelines regarding the use of compressed air. These regulations may include requirements for air quality, maintenance and testing procedures, and documentation of system performance.
It is important to note that medical and dental applications have specific requirements and standards. Therefore, it is essential to choose air compressors and associated equipment that meet the necessary specifications and comply with industry regulations.
.webp)
Are there air compressors specifically designed for high-pressure applications?
Yes, there are air compressors specifically designed for high-pressure applications. These compressors are engineered to generate and deliver compressed air at significantly higher pressures than standard air compressors. Here are some key points about high-pressure air compressors:
1. Pressure Range: High-pressure air compressors are capable of producing compressed air at pressures typically ranging from 1000 to 5000 psi (pounds per square inch) or even higher. This is considerably higher than the typical range of 100 to 175 psi for standard air compressors.
2. Construction: High-pressure aircompressors feature robust construction and specialized components to withstand the higher pressures involved. They are designed with reinforced cylinders, pistons, valves, and seals that can handle the increased stress and prevent leaks or failures under high-pressure conditions.
3. Power: Generating high-pressure compressed air requires more power than standard compressors. High-pressure air compressors often have larger motors or engines to provide the necessary power to achieve the desired pressure levels.
4. Applications: High-pressure air compressors are utilized in various industries and applications where compressed air at elevated pressures is required. Some common applications include:
- Industrial manufacturing processes that involve high-pressure air for operations such as air tools, pneumatic machinery, and equipment.
 - Gas and oil exploration and production, where high-pressure air is used for well drilling, well stimulation, and enhanced oil recovery techniques.
 - Scuba diving and underwater operations, where high-pressure air is used for breathing apparatus and underwater tools.
 - Aerospace and aviation industries, where high-pressure air is used for aircraft systems, testing, and pressurization.
 - Fire services and firefighting, where high-pressure air compressors are used to fill breathing air tanks for firefighters.
 
5. Safety Considerations: Working with high-pressure air requires adherence to strict safety protocols. Proper training, equipment, and maintenance are crucial to ensure the safe operation of high-pressure air compressors. It is important to follow manufacturer guidelines and industry standards for high-pressure applications.
When selecting a high-pressure air compressor, consider factors such as the desired pressure range, required flow rate, power source availability, and the specific application requirements. Consult with experts or manufacturers specializing in high-pressure compressed air systems to identify the most suitable compressor for your needs.
High-pressure air compressors offer the capability to meet the demands of specialized applications that require compressed air at elevated pressures. Their robust design and ability to deliver high-pressure air make them essential tools in various industries and sectors.


editor by CX 2023-09-27