Tag Archives: air compressor gas

China Hot selling Vwf-2.5/ (10-15) -60 Compressed Natural Gas Compressor Stainless Steel Material Energy Saving and Consumption Reduction, High Efficiency and Stability air compressor portable

Product Description

HangZhou United Compressor Manufacturing Co., Ltd. was established in 2002 and is a high-tech enterprise in ZheJiang Province. The company has complete production equipment testing methods, and relies on its technological advantages to introduce, absorb, and digest new technologies and processes from abroad. The products have covered all domestic demand industries and regions, and are exported to multiple countries such as Russia, Tajikistan, India, Pakistan, North Korea, etc. It is a qualified supplier and partner for many domestic and foreign enterprises.
    The company has a sales and service team that continuously provides customers with various energy-saving and modern compressor system products. In the past 10 years, the company has maintained rapid and stable development, providing products and services for industries such as natural gas, steel, petroleum, chemical, coal, mining, and metallurgy. We not only have mature products, but also have a capable after-sales service team, such as conducting pre-sales inspections of compressors, timely tracking during sales, and 24-hour after-sales repair and maintenance services.

Product Application
Mainly used for pressurized transmission of natural gas into the pipeline network (Natural pipeline gas extraction and combustible gas recovery tank filling)
It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding bottle making in the food industry, and dust removal of parts in the machine manufacturing industry.
Product Features
1. This series of compressors is an advanced piston compressor unit produced and manufactured using the product technology of Mannes Mandermarg Company in Germany.
2. The product has the characteristics of low noise, low vibration, compact structure, smooth operation, safety and reliability, and high automation level. It can also be configured with a data-driven remote display and control system according to customer requirements.
3. Equipped with alarm and shutdown functions for low oil pressure, low water pressure, high temperature, low inlet pressure, and high exhaust pressure of the compressor, making the operation of the compressor more reliable.
Structure Introduction
The unit consists of a compressor host, electric motor, coupling, flywheel, pipeline system, cooling system, electrical equipment, and auxiliary equipment.

Reference Technical parameters and specifications

NO. MODEL Compressed medium Flow rate
Nm³/h
Inlet pressure
MPa
Outlet pressure
MPa
Rotating speed
r/min
Motor power
KW
Cooling mode Overall dimension
mm
Weight
Kg
1 DW-14/(0-0.2)-25 Raw gas 800 0-0.02 2.5 740 160 Water cooled 4800*3200*1915 ~10000
2 VW-8/18 Vinylidene fluoride gas 418 Atmospheric pressure 1.8 980 75 Water cooled 3700*2000*1700 ~4500
3 VWD-3.2/(0-0.2)-40 Biogas 230 0-0.2 4.0 740 45 Water cooled 6000*2500*2650 ~8000
4 VW-9/6 Ethyl chloride gas 470 Atmospheric pressure 0.6 980 55 Water cooled 2800*1720*1700 ~3500
5 DWF-12.4/(9-12)-14 Carbon dioxide 6400 0.9-1.2 1.4 740 185 Air cooled 6000*2700*2200 ~10000
6 VWF-2.86/5-16 Nitrogen gas 895 0.5 1.6 740 55 Air cooled 3200*2200*1750 ~3500
7 DW-2.4/(18-25)-50 Raw gas 2900 1.8-2.5 5.0 980 160 Water cooled 4300*3000*1540 ~4500
8 VW-5.6/(0-6)-6 Isobutylene gas 1650 0-0.6 0.6 740 45 Water cooled 2900X1900X1600 ~3500
9 VW-3.8/3.5 Mixed gas 200 Atmospheric pressure 0.35 980 18.5 Water cooled 2200*1945*1600 ~2000
10 ZW-1.7/3.5 Vinyl chloride gas  100 Atmospheric pressure 0.35 740 15 Water cooled 2700X1600X2068 ~2000
11 ZWF-0.96/5 Hydrogen chloride gas 55 Atmospheric pressure 0.5 740 11 Air cooled 2000*1500*2000 ~1000
12 VW-0.85/(0-14)-40  Refrigerant gas 300 0-1.4 4.0 740 55 Water cooled 4500*2300*1780 ~5500
13 DW-3.78/(8-13)-(16-24) Ammonia gas 2700 0.8-1.3 1.6-2.4 740 75 Water cooled 3200*2000*1700 ~3500

Related products

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 12 Months
Lubrication Style: Customized
Cooling System: Air/Water /Mixed Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Customized
Structure Type: Open Type
Customization:
Available

|

air compressor

How Do You Maintain a Gas Air Compressor?

Maintaining a gas air compressor is essential to ensure its optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, extends the compressor’s lifespan, and promotes efficient operation. Here are some key maintenance steps for a gas air compressor:

1. Read the Manual:

Before performing any maintenance tasks, thoroughly read the manufacturer’s manual specific to your gas air compressor model. The manual provides important instructions and guidelines for maintenance procedures, including recommended intervals and specific maintenance requirements.

2. Check and Change the Oil:

Gas air compressors typically require regular oil changes to maintain proper lubrication and prevent excessive wear. Check the oil level regularly and change it according to the manufacturer’s recommendations. Use the recommended grade of oil suitable for your compressor model.

3. Inspect and Replace Air Filters:

Inspect the air filters regularly and clean or replace them as needed. Air filters prevent dust, debris, and contaminants from entering the compressor’s internal components. Clogged or dirty filters can restrict airflow and reduce performance. Follow the manufacturer’s guidelines for filter cleaning or replacement.

4. Drain Moisture from the Tank:

Gas air compressors accumulate moisture in the compressed air, which can lead to corrosion and damage to the tank and internal components. Drain the moisture from the tank regularly to prevent excessive moisture buildup. Refer to the manual for instructions on how to properly drain the moisture.

5. Check and Tighten Connections:

Regularly inspect all connections, fittings, and hoses for any signs of leaks or loose connections. Tighten any loose fittings and repair or replace damaged hoses or connectors. Leaks can lead to reduced performance and inefficiency.

6. Inspect Belts and Pulleys:

If your gas air compressor has belts and pulleys, inspect them for wear, tension, and proper alignment. Replace any worn or damaged belts and ensure proper tension to maintain optimal performance.

7. Clean the Exterior and Cooling Fins:

Keep the exterior of the gas air compressor clean from dirt, dust, and debris. Use a soft cloth or brush to clean the surfaces. Additionally, clean the cooling fins regularly to remove any accumulated debris that can impede airflow and cause overheating.

8. Schedule Professional Servicing:

While regular maintenance can be performed by the user, it is also important to schedule professional servicing at recommended intervals. Professional technicians can perform thorough inspections, conduct more complex maintenance tasks, and identify any potential issues that may require attention.

9. Follow Safety Precautions:

When performing maintenance tasks on a gas air compressor, always follow safety precautions outlined in the manual. This may include wearing protective gear, disconnecting the power source, and ensuring proper ventilation in confined spaces.

By following these maintenance steps and adhering to the manufacturer’s guidelines, you can keep your gas air compressor in optimal condition, prolong its lifespan, and ensure safe and efficient operation.

air compressor

What Is the Impact of Altitude on Gas Air Compressor Performance?

Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:

1. Decreased Air Density:

As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.

2. Reduced Compressor Output:

The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.

3. Increased Compressor Workload:

At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.

4. Engine Power Loss:

If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.

5. Considerations for Proper Sizing:

When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.

6. Maintenance and Adjustments:

Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.

In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.

air compressor

Are There Different Types of Gas Air Compressors Available?

Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:

1. Reciprocating Gas Air Compressors:

Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.

2. Rotary Screw Gas Air Compressors:

Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.

3. Rotary Vane Gas Air Compressors:

Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.

4. Centrifugal Gas Air Compressors:

Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.

5. Oil-Free Gas Air Compressors:

Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.

6. Portable Gas Air Compressors:

Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.

7. High-Pressure Gas Air Compressors:

High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.

8. Biogas Air Compressors:

Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.

These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.

China Hot selling Vwf-2.5/ (10-15) -60 Compressed Natural Gas Compressor Stainless Steel Material Energy Saving and Consumption Reduction, High Efficiency and Stability   air compressor portableChina Hot selling Vwf-2.5/ (10-15) -60 Compressed Natural Gas Compressor Stainless Steel Material Energy Saving and Consumption Reduction, High Efficiency and Stability   air compressor portable
editor by CX 2024-05-16

China supplier High Pressure M Type Natural Gas Station Compressor lowes air compressor

Product Description

Product Description

High pressure M type natural gas station compressor

Large compressor types are divided into: symmetrical balance type, M type.
The middle body between the slideway and the cylinder can be designed with a long-shaped single-chamber, a short-shaped single-chamber, an extended-shaped double-chamber, and a long-short dual-chamber structure according to user requirements; it adopts a water-cooling system, and all levels are equipped with intake and exhaust buffers There are 2 sets of lubricating systems. When the oil pressure is low, the auxiliary oil pump system automatically starts to run. All equipment is integrated on the skid-mounted base, which has the characteristics of compact structure, good sealing performance, small starting torque, good inertia force balance, small mechanical vibration, high reliability, easy maintenance, and long service life.

Lubrication method: 1. Without oil 2. With oil
Cooling method: 1. Water cooling 2. Air cooling 3. Mixed cooling (selected according to actual needs)
Overall structure: fixed, mobile, skid-mounted, soundproof cabin, etc. (selected according to actual needs)

In addition to the functions of a standard station, the CNG refueling mother station also fills compressed natural gas into a high-pressure gas transport semi-trailer (referred to as a semi-trailer) through the refueling column located in the station, and transports it to the refueling sub-station to refuel the vehicle. At the same time, as an effective supplement to pipeline gas transmission, in small and medium-sized cities far away from natural gas pipelines, semi-trailers can be used to transport compressed natural gas by road to the cities where it is used. Other natural gas users supply gas.

The company can independently design, manufacture and produce various types of compressors according to user requirements, and provide users with high-quality pre-sale, in-sale and after-sale services.

 

1 Compressor type MA-5.33/5.5-60
2 Structure M-type, horizontal symmetrical balance
3 Rotating speed 988rpm
4 Compression stage 3
5 Medium Natural gas
6 Final discharge pressure 60bar
7 Inlet pressure bar 5.5
8 Discharge capacity Nm3/h 5900
9 Shaft power KW 550
10 Discharge temperature  15 ºC not higher than the environmental temperature
11 Main motor Power Voltage Explosion -proof grade  Protection grade
    600KW 380V ExdIIBT4 IP55
12 Reverse angle 156 degree
13 Peak-to-valley ratio of piston force 44 %
14 Cooling type Gas: air cooling , cylinder: non-cooling
15 Drive type direct-connected drive through diaphragm coupling(no flywheel)
16 Lubrication type Oil-less
17 Installation mode Skid mounted
18 Control type PLC + touch screen + soft-start
19 Dimensions(LxWxH) 7000x2700x2200mm
20 Weight 18000kg(about)

Packaging & Shipping

Company Profile

Certifications

Payment and delivery

FAQ

Q1. Are you trading company or manufacture ?

A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.

Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.

 

Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.

 

Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
     2. Well-trained engineers available to overseas service.
     3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.

 

Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.

 

Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.

 

Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.

 

Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
     2. Some key parts are imported from overseas
     3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.

 

Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.

 

Q10.How long could your air compressor be used?
A: Generally, more than 10 years.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 24months
Lubrication Style: Oil-free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How Do You Troubleshoot Common Issues with Gas Air Compressors?

Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:

1. Start with Safety Precautions:

Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.

2. Check Power Supply and Connections:

Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.

3. Check Fuel Supply:

For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.

4. Inspect Air Filters:

Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.

5. Check Oil Level and Quality:

If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.

6. Inspect Spark Plug:

If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.

7. Check Belts and Pulleys:

Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.

8. Listen for Unusual Noises:

During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.

9. Consult the Owner’s Manual:

If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.

10. Seek Professional Assistance:

If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.

Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.

air compressor

How Do You Transport Gas Air Compressors to Different Job Sites?

Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:

1. Equipment Size and Weight:

The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.

2. Transportation Modes:

Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:

  • Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
  • Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
  • Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.

3. Securing and Protection:

It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.

4. Permits and Regulations:

Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.

5. Route Planning:

Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.

6. Equipment Inspection and Maintenance:

Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.

In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.

air compressor

What Are the Advantages of Using a Gas Air Compressor Over an Electric One?

Using a gas air compressor offers several advantages over an electric air compressor. Gas-powered compressors provide unique benefits in terms of mobility, versatility, power, and convenience. Here’s a detailed explanation of the advantages of using a gas air compressor:

1. Portability and Mobility:

Gas air compressors are typically more portable and mobile compared to electric compressors. They often feature handles, wheels, or trailers, allowing for easy transportation to different locations. This portability is especially advantageous in situations where compressed air is needed at remote job sites, outdoor events, or areas without access to electricity. Gas air compressors can be easily moved and positioned where they are required.

2. Independence from Electricity:

One of the primary advantages of gas air compressors is their independence from electricity. They are powered by gas engines, which means they do not rely on a direct connection to the electrical grid. This makes them suitable for use in areas where electrical power is limited, unreliable, or unavailable. Gas air compressors offer a reliable source of compressed air even in remote locations or during power outages.

3. Versatility in Fuel Options:

Gas air compressors provide versatility in terms of fuel options. They can be powered by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This flexibility allows users to choose the most readily available or cost-effective fuel source based on their specific requirements. It also makes gas compressors adaptable to different environments and fuel availability in various regions.

4. Higher Power Output:

Gas air compressors typically offer higher power output compared to electric compressors. Gas engines can generate more horsepower, allowing gas compressors to deliver greater air pressure and volume. This higher power output is beneficial when operating pneumatic tools or equipment that require a significant amount of compressed air, such as jackhammers, sandblasters, or heavy-duty impact wrenches.

5. Continuous Operation:

Gas air compressors can provide continuous operation without the need for frequent breaks or cooldown periods. Electric compressors may overheat with prolonged use, requiring intermittent rest periods to cool down. Gas compressors, on the other hand, can operate continuously for longer durations without the risk of overheating. This continuous operation capability is particularly advantageous in demanding applications or situations that require extended periods of compressed air usage.

6. Quick Startup and Response:

Gas air compressors offer quick startup and response times. They can be started instantly by simply pulling a cord or pressing a button, whereas electric compressors may require time to power up and reach optimal operating conditions. Gas compressors provide immediate access to compressed air, allowing for efficient and prompt task completion.

7. Durability and Resistance to Voltage Fluctuations:

Gas air compressors are generally more durable and resistant to voltage fluctuations compared to electric compressors. Electric compressors can be affected by voltage drops or surges, which may impact their performance or cause damage. Gas compressors, however, are less susceptible to voltage-related issues, making them reliable in environments where voltage fluctuations are common.

8. Lower Energy Costs:

Gas air compressors can offer lower energy costs compared to electric compressors, depending on the price of the fuel being used. Gasoline or diesel fuel, for example, may be more cost-effective than electricity in certain regions or applications. This cost advantage can result in significant savings over time, especially for high-demand compressed air operations.

Overall, the advantages of using a gas air compressor over an electric one include portability, independence from electricity, fuel versatility, higher power output, continuous operation capability, quick startup and response times, durability, resistance to voltage fluctuations, and potentially lower energy costs. These advantages make gas air compressors a preferred choice in various industries, remote locations, and applications where mobility, power, and reliability are crucial.

China supplier High Pressure M Type Natural Gas Station Compressor   lowes air compressorChina supplier High Pressure M Type Natural Gas Station Compressor   lowes air compressor
editor by CX 2024-05-15

China Best Sales High Pressure Oil Free Medical Oxygen Booster Compressor 200 Bar Gas Compressor air compressor for car

Product Description

 

Product Description

High Pressure Oil Free Medical Oxygen Booster Compressor 200 Bar Gas Compressor

Rocky Machinery Equipment Co., Ltd. mainly produces non-flammable and explosive gas compressors such as oil-free air, oxygen, nitrogen, argon, helium, carbon dioxide, sulfur hexafluoride, and supporting post-processing equipment, cold dryers, filters , Air storage tank, to provide users with oil-free, water-free, dust-free, sterile purified air. The grease-injectable oil-free compressor changes the structure of the original old-fashioned model, which is easy to maintain and prolongs the service life. The product has passed the ISO9001-2008 system certification and CE certification, providing customers with high-quality oil-free compressor products.

Oil-free medium and high pressure series air compressors are air-cooled or water-cooled. This series of units is equipped with automatic stop/start control for the compressor. The working pressure and pressure difference can be adjusted, and it is also used for emergency shutdown.

Each machine is designed and produced according to customer requirements, and its control is simple and its operation is reliable, so it is your ideal choice. The high-pressure gas compressor currently produced by our company can reach 350 kg. The main engine adopts a fully enclosed structure, which has no pollution to the compressed medium, no leakage, reliable compressor performance, simple operation, and is favored by customers because of its compact structure and fast connection.

Technical parameter

Model No. Flow rate
    (N m³/h)
Inlet
pressure
(Mpa)
Exhaust
pressure
(Mpa)
Power
(kw)
Cylinder bore Inlet connection
size
Outlet
connection
sizes
Overall dimension
(mm)
Weight
(kg)
Speed
(r/min)
RKWWY-5/4-150 5 0.4 15 4 Ø50+Ø30+Ø20 Rc 1/2 G5/8 1350X1000X1100 400 470
RKWWY-10/4-150 10 0.4 15 5.5 Ø65+Ø36+Ø20 Rc 1/2 G5/8 1350X1000X1100 410 470
RKWWY-15/4-150 15 0.4 15 7.5 Ø65+Ø36+Ø20 Rc 1/2 G5/8 1350X1000X1100 420 640
RKWWY-20/4-150 20 0.4 15 1 1 Ø70+Ø36+Ø20 Rc 1/2 G5/8 1350X1000X1100 430 580
RKWWY-25/4-150 25 0.4 15 1 1 Ø70+Ø36+Ø20 Rc 1/2 G5/8 1350X1000X1100 430 640
RKWWY-30/4-150 30 0.4 15 15 Ø90+Ø50+Ø30 Rc 1/2 G5/8 1350X1000X1100 450 470
RKWWY-35/4-150 35 0.4 15 15 Ø90+Ø50+Ø30 Rc 1/2 G5/8 1350X1000X1100 450 500
RKWWY-40/4-150 40 0.4 15 15 Ø90+Ø50+Ø30 Rc 1/2 G5/8 1350X1000X1100 450 580
RKSWY-45/4-150 45 0.4 15 18.5 2-Ø70+ Ø50+Ø30 Rc 1/2 G5/8 1450X1100X1250 520 580
RKSWY-50/4-150 50 0.4 15 18.5 2-Ø70+ Ø50+Ø30 Rc 1/2 G5/8 1450X1100X1250 520 580
RKSWY-55/4-150 55 0.4 15 18.5 2-Ø70+ Ø50+Ø30 Rc 1 G5/8 1450X1100X1250 520 640
RKSWY-60/4-150 60 0.4 15 22 2-Ø70+ Ø50+Ø30 Rc 1 G5/8 1450X1100X1250 540 720
RKSWY-65/4- 150 65 0.4 15 22 2- Φ70+ Φ50+ Φ30 Rc 1 G5/8 1450*1100*1250 540 720
RKSWY-70/4- 150 70 0.4 15 22 2- Φ70+ Φ50+ Φ30 Rc 1 G5/8 1450*1100*1250 540 720
RKWWY-75/4- 150- II  75 0.4 15 15*2 (Φ90+ Φ50+ Φ30)*2 Rc 1 G5/8 2800*1250*1200 1060 580
RKWWY-80/4- 150-II    80 0.4 15 15*2 (Φ90+ Φ50+ Φ30)*2 Rc 1 G5/8 2800*1250*1200 1060 580
RKWWY-85/4- 150-II  85 0.4 15 15*2 (Φ90+ Φ50+ Φ30)*2 Rc 1 G5/8 2800*1250*1200 1060 580
RKSWY-90/4- 150-II    90 0.4 15 18.5*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1260 580
RKSWY-95/4- 150-II    95 0.4 15 18.5*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1260 580
RKSWY- 100/4- 150-II    100 0.4 15 18.5*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1260 580
RKSWY- 105/4- 150-II    105 0.4 15 18.5*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1260 580
RKSWY- 1 10/4- 150-II    1 10 0.4 15 18.5*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1260 580
RKSWY- 1 15/4- 150-II    1 15 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 640
RKSWY- 120/4- 150-II    120 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 640
RKSWY- 125/4- 150-II    125 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 640
RKSWY- 130/4- 150-II    130 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 720
RKSWY- 135/4- 150-II    135 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 720
RKSWY- 140/4- 150-II    140 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 720

The basic parameters listed in this table can be confirmed according to the actual working conditions
1. Touch screen PLC control Touch
2. Remote control is optional
3. Inlet and outlet pressure overload, temperature overheating, cooling water failure, circular rolling prompt alarm and stop
4. Running time display, maintenance cycle reminder
5. With its own water tank and circulation pump, no external pipeline is required, and it can be filled with antifreeze at low temperature without hindrance

Application industry

High-pressure oil-free gas booster is a follow-up equipment used in the field of gas separation, widely used in gas supply systems in chemical industry, food and beverage, electronic instruments, transportation and telecommunications, textiles, scientific research and other departments (such as: pressure detection, pressure test , Plastic blowing, bottle filling, diesel engine starting, hyperbaric oxygen chamber, pipeline cleaning, etc.). Can provide oil-free, pure and pollution-free high-quality compressed air.

Successful cases

Customer Visit

Packaging & Shipping

 • Packing Details: Plywood crate pallet plus foam board and bubble film, Full closed wooden case. 1pcs/each package (for stationary screw air compressor)

• Shipping method: by sea, by LCL/FCL or as requested
• Delivery method: FOB, CFR, CIF and EXW etc.
• Delivery time: in 7-15 days after receiving deposit (customized machines not included)

Company Profile

ZheJiang CHINAMFG Machinery Co., Ltd. is a company dedicated to the production and research and development of various gas compression equipment. The company was established in 2012 and has a total of 5 licensed technical engineers. Mainly engaged in air, nitrogen, CO2 and other special gas compression equipment and after-treat equipment. With the development in recent years, the company has established a foreign trade team in ZheJiang , and hired foreign trade consultants with 10 years of industry experience to better serve customers worldwide. With excellent quality and the support of 30 distributors worldwide, our annual sales in 2018 exceeded 5 million US dollars. We look CHINAMFG to working with you to create a better tomorrow!

 

After Sales Service

1. 24/7 after sales service support in different languages.
2. Customized color, Model ect.
3. Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4. Delivery on time and excellent after-sales service.
5. Plenty of original spare parts with proven quality.
6. All kinds of technical documents in different languages.

Payment and delivery

FAQ

Q1. Are you trading company or manufacture ?

A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.

Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.

 

Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.

 

Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
     2. Well-trained engineers available to overseas service.
     3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.

 

Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.

 

Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.

 

Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.

 

Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
     2. Some key parts are imported from overseas
     3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.

 

Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.

 

Q10.How long could your air compressor be used?
A: Generally, more than 10 years.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 24 Months
Lubrication Style: Oil-free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can Gas Air Compressors Be Used in Construction Projects?

Gas air compressors are widely used in construction projects due to their portability, versatility, and ability to provide the necessary compressed air for various applications. They are an essential tool in the construction industry, enabling the efficient and effective operation of pneumatic tools and equipment. Here’s a detailed explanation of how gas air compressors are used in construction projects:

1. Powering Pneumatic Tools:

Gas air compressors are commonly used to power a wide range of pneumatic tools on construction sites. These tools include jackhammers, nail guns, impact wrenches, concrete breakers, air drills, sanders, grinders, and paint sprayers. The compressed air generated by the gas air compressor provides the necessary force and power for efficient operation of these tools, enabling tasks such as concrete demolition, fastening, surface preparation, and finishing.

2. Air Blow and Cleaning Operations:

In construction projects, there is often a need to clean debris, dust, and dirt from work areas, equipment, and surfaces. Gas air compressors are used to generate high-pressure air for air blow and cleaning operations. This helps maintain cleanliness, remove loose materials, and prepare surfaces for further work, such as painting or coating.

3. Operating Pneumatic Systems:

Gas air compressors are employed to operate various pneumatic systems in construction projects. These systems include pneumatic control devices, pneumatic cylinders, and pneumatic actuators. Compressed air from the gas air compressor is used to control the movement of equipment, such as gates, doors, and barriers, as well as to operate pneumatic lifts, hoists, and other lifting mechanisms.

4. Concrete Spraying and Shotcreting:

Gas air compressors are utilized in concrete spraying and shotcreting applications. Compressed air is used to propel the concrete mixture through a nozzle at high velocity, ensuring proper adhesion and distribution on surfaces. This technique is commonly employed in applications such as tunnel construction, slope stabilization, and repair of concrete structures.

5. Sandblasting and Surface Preparation:

In construction projects that require surface preparation, such as removing old paint, rust, or coatings, gas air compressors are often used in conjunction with sandblasting equipment. Compressed air powers the sandblasting process, propelling abrasive materials such as sand or grit onto the surface to achieve effective cleaning and preparation before applying new coatings or finishes.

6. Tire Inflation and Equipment Maintenance:

Gas air compressors are utilized for tire inflation and equipment maintenance on construction sites. They provide compressed air for inflating and maintaining proper tire pressure in construction vehicles and equipment. Additionally, gas air compressors are used for general equipment maintenance, such as cleaning, lubrication, and powering pneumatic tools for repair and maintenance tasks.

7. Portable and Remote Operations:

Gas air compressors are particularly beneficial in construction projects where electricity may not be readily available or feasible. Portable gas air compressors provide the flexibility to operate in remote locations, allowing construction crews to utilize pneumatic tools and equipment without relying on a fixed power source.

Gas air compressors are an integral part of construction projects, facilitating a wide range of tasks and enhancing productivity. Their ability to power pneumatic tools, operate pneumatic systems, and provide compressed air for various applications makes them essential equipment in the construction industry.

air compressor

How Do Gas Air Compressors Contribute to Energy Savings?

Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:

1. Efficient Power Source:

Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.

2. Reduced Electricity Consumption:

Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.

3. Demand-Sensitive Operation:

Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.

4. Energy Recovery:

Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.

5. Proper Sizing and System Design:

Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.

6. Regular Maintenance:

Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.

7. System Optimization:

For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.

In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.

air compressor

How Does a Gas Air Compressor Work?

A gas air compressor works by utilizing a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air can then be used for various applications. Here’s a detailed explanation of how a gas air compressor operates:

1. Gas Engine:

A gas air compressor is equipped with a gas engine as its power source. The gas engine is typically fueled by gasoline, diesel, natural gas, or propane. When the engine is started, the fuel is combusted within the engine’s cylinders, generating mechanical energy in the form of rotational motion.

2. Compressor Pump:

The gas engine drives the compressor pump through a mechanical linkage, such as a belt or direct coupling. The compressor pump is responsible for drawing in atmospheric air and compressing it to a higher pressure. There are different types of compressor pumps used in gas air compressors, including reciprocating, rotary screw, or centrifugal, each with its own operating principles.

3. Intake Stroke:

In a reciprocating compressor pump, the intake stroke begins when the piston moves downward within the cylinder. This creates a vacuum, causing the inlet valve to open and atmospheric air to be drawn into the cylinder. In rotary screw or centrifugal compressors, air is continuously drawn in through the intake port as the compressor operates.

4. Compression Stroke:

During the compression stroke in a reciprocating compressor, the piston moves upward, reducing the volume within the cylinder. This compression action causes the air to be compressed and its pressure to increase. In rotary screw compressors, two interlocking screws rotate, trapping and compressing the air between them. In centrifugal compressors, air is accelerated and compressed by high-speed rotating impellers.

5. Discharge Stroke:

Once the air is compressed, the discharge stroke begins in reciprocating compressors. The piston moves upward, further reducing the volume and forcing the compressed air out of the cylinder through the discharge valve. In rotary screw compressors, the compressed air is discharged through an outlet port as the interlocking screws continue to rotate. In centrifugal compressors, the high-pressure air is discharged from the impeller into the surrounding volute casing.

6. Pressure Regulation:

Gas air compressors often include pressure regulation mechanisms to control the output pressure of the compressed air. This can be achieved through pressure switches, regulators, or control systems that adjust the compressor’s operation based on the desired pressure setting. These mechanisms help maintain a consistent and controlled supply of compressed air for the specific application requirements.

7. Storage and Application:

The compressed air produced by the gas air compressor is typically stored in a receiver tank or used directly for applications. The receiver tank helps stabilize the pressure and provides a reservoir of compressed air for immediate use. From the receiver tank, the compressed air can be distributed through pipelines to pneumatic tools, machinery, or other devices that require the compressed air for operation.

Overall, a gas air compressor operates by using a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air is then regulated and used for various applications, providing a reliable source of power for pneumatic tools, machinery, and other equipment.

China Best Sales High Pressure Oil Free Medical Oxygen Booster Compressor 200 Bar Gas Compressor   air compressor for carChina Best Sales High Pressure Oil Free Medical Oxygen Booster Compressor 200 Bar Gas Compressor   air compressor for car
editor by CX 2024-05-14

China high quality Industrial Gas Recovery Booster Compressor Oil-Free Sf6 Gas Compressor air compressor price

Product Description

 

 

Introduction

Small vibration, low noise, long service life of consumableparts, continuousoperation; pureofthecompressed gas , no secondary pollution, used for pharmaceutical, chemical, food, scientific research,  and other fields of process gas compressor,also can be used for air separation industry of gas pressurizing cases.
Cape-Golden brand series oilless hermetic compressoradopts hermetic construction for its motor without pollutino to the medium to be compressed and withouteakage.The series compressor has numerous advantage of reliable performance,simple opration,compact construction,quick connection etc.and thus is deeply favored by the users.It can be applied in the compression and recovery of toxic,rare and precioues gases helium,methane,ammonia,freon,carbon dioxide etc.
 

 

 

 

 

Main Technical Parameters

Main Parameter
1. Intake Pressure:0-3.0MPa
2.Exhaust Pressure:≤30MPa
3.Motor Power:45-110KW
4.Compressor Speed:300-580r/min
5.Compression series:1-4
6.Throughput:500-3000Nm³/h
7.Cooling Way : Air or Water 
 

 

 

Oxygen Compressor Protection

 

1. The operator must hold the corresponding electrician operation certificate, and work under the guidance of electrical technicians. Power supply must be cut off before electrical maintenance, and special person monitoring and warning signs should be set up. 
2. During the operation of the High Pressure Gas Compressor, do not touch the moving parts such as the transmission belt and fan wheel, and do not touch the cylinder wall, air pipe, and water pipe to avoid scalding.

 

Presentation

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: New Energy
Noise Level: Low
Machine Size: Medium
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Is the Fuel Efficiency of Gas Air Compressors?

The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:

1. Engine Design and Size:

The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.

2. Load Capacity and Usage Patterns:

The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.

3. Maintenance and Tuning:

Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.

4. Operating Conditions:

The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.

5. Fuel Type:

The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.

6. Operator Skills and Practices:

The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.

It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.

Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.

air compressor

What Is the Impact of Altitude on Gas Air Compressor Performance?

Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:

1. Decreased Air Density:

As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.

2. Reduced Compressor Output:

The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.

3. Increased Compressor Workload:

At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.

4. Engine Power Loss:

If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.

5. Considerations for Proper Sizing:

When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.

6. Maintenance and Adjustments:

Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.

In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.

air compressor

What Are the Primary Applications of Gas Air Compressors?

Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:

1. Construction Industry:

Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.

2. Agriculture and Farming:

Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.

3. Recreational Activities:

Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.

4. Mobile Service Operations:

Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.

5. Remote Job Sites:

Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.

6. Emergency and Backup Power:

In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.

7. Sandblasting and Surface Preparation:

Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.

8. Off-Road and Outdoor Equipment:

Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.

Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.

China high quality Industrial Gas Recovery Booster Compressor Oil-Free Sf6 Gas Compressor   air compressor priceChina high quality Industrial Gas Recovery Booster Compressor Oil-Free Sf6 Gas Compressor   air compressor price
editor by CX 2024-05-07

China OEM Carbon Dioxide CO2 Co Gas Booster High Pressure Diaphragm Compressor for Industrial air compressor CHINAMFG freight

Product Description

Diaphragm compressor according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.

Product description
Main Structure
Diaphragm compressor structure is mainly composed of motor, base, crankcase, crankshaft linkage mechanism, cylinder components, crankshaft connecting rod, piston, oil and gas pipeline, electric control system and some accessories.

Gas Media type
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc.(Nitrogen diaphragm compressor,bottle filling compressor,oxygen diaphragm compressor

Application 
Food industry, petroleum industry, chemical industry, electronics industry, nuclear power plant, aerospace, medicine, scientific research.

Outlet pressure at 50bar 200 bar, 350 bar (5000 psi), 450 bar, 500 bar, 700 bar (10,000 psi), 900 bar (13,000 psi) and other pressure can be customized .

GL Model Instruction
GL diaphragm compressor is a special structure of the volumetric compressor, is the highest level of compression in the field of gas compression, this compression method Without secondary pollution, it can ensure the purity of gas is more than 5, and it has very good protection against compressed gas. It has the characteristics of large compression ratio, good sealing performance, and the compressed gas is not polluted by lubricating oil and other CHINAMFG impurities. Therefore, it is suitable for compressing high-purity, rare and precious, flammable, explosive, toxic, harmful, corrosive and high-pressure gases. The compression method is generally specified in the world for compressing high-purity gas, flammable and explosive gas, toxic gas and oxygen. Etc. (such as nitrogen diaphragm compressor, oxygen diaphragm compressor, hydrogen sulfide diaphragm compressor, argon diaphragm compressor, etc.).
GD diaphragm compressor for my company independent research and development of large diaphragm compressor, its advantages are: high compression ratio, large displacement, large piston force, stable running, high exhaust pressure, etc, has been widely used and petroleum chemical industry and nuclear power plant, and so on,.Two GD type diaphragm compressor cylinder arrangement for symmetrically arranged in parallel, more suitable for the petrochemical and nuclear power plant such as uninterrupted operation for a long time, because of the cylinder body symmetry, run up against other arrangement of diaphragm compressor is the most stable operation, running, small vibration from the ground clearance is more convenient in maintenance.

Product features:
1. Good sealing performance:
Diaphragm compressor is a kind of special structure positive displacement compressor, the gas does not need lubrication, good sealing performance, the compression medium does not contact with any lubricant, will not produce any contamination in the compression process, Especially suitable for high purity (99.9999% above), rare, highly corrosive, toxic ,harmful, flammable , explosive and radioactive gas compression, transportation and bottle filling.

2.Cylinder heat dissipation performance is good:
Compressor cylinder heat dissipation performance is good, close to isothermal compression, can use high compression ratio, suitable for compression of high pressure gas.

Technological advantage
1, Low of speed prolong the service life of wearing parts. The new membrane cavity curve improves the volume efficiency.optimizes the gas valve profile, and the diaphragm adopts a special heat treatment method, greatly prolongs the service life.

2, the use of high efficiency cooler, so that the  temperature is low, high efficiency, can properly extend the life of lubricating oil, O-ring, valve spring. Under the condition of meeting the technological parameters, the structure is more advanced, reasonable and energy saving.

3, the cylinder head using Mosaic double O-ring seal, its sealing effect is far better than open head.

4, diaphragm rupture alarm structure advanced, reasonable, reliable, diaphragm installation is non-directional, easy to replace.

5. The parts of the whole equipment are concentrated on a common skid which is easy to transport, install and operation.00:33

Product Paramenters

Model

GL-240/20-200

Type

L type

Medium

Sulfur Hexafluoride Gas SF6

Flow

240 Nm3/h

Inlet Pressure

2 MPa

Discharge Pressure

20 MPa

Voltage

380 V, other voltage for special customize for each order

Power

55 KW

Weight

4000 KG

Dimension

3340*1900*2157 mm

Cooling Method

Water Cooling

After Sales Service

Online Service

Certification

CE

Driving Mode

Electric Motor

 

Note:

1, In addition on the above-mentioned products we can also provide products used for compression of various gas and other specifications and models CHINAMFG users’ special requirement.

2, Clients’ inquiries should contain related parameters
1. The gas compression medium
2. The flow rate: _____Nm3/hr
3. Inlet pressure: _____ Bar
4. Discharge pressure: _____ Bar
5. Inlet temperature
6. Cooling water temperature as well as other technical requirement.

How does a diaphragm compressor work?
A diaphragm compressor is a variant of the classic reciprocating compressor with backup and piston rings and rod seal. The compression of gas occurs by means of a flexible membrane, instead of an intake element. The back and forth moving membrane is driven by a rod and a crankshaft mechanism.

Advantages of Diaphragm compressor:

1. Oil-free compression due to the hermetic separation between gas and oil chamber.
2. Abrasion-free compression due to static seals in the gas stream
3. Automatic shutdown in case of a diaphragm failure prevents damage
4. High Compression Ratios-Discharge pressure up to 1000bar.
5. Contamination Free Compression
6. Corrosion Resistance
7. High Reliability

Applications

Commissioning and Sevice

User Notice:

1. Installation: the user according to our factory provided factory foundation plan, design drawing & installation suggestion maps, brochures and other materials to ask local professional company to install. 2. Commissioning: Once the user finished installation at local, and requiring our engineers go to overseas to do commissioning kindly notify us before 20 days. 3. Training: In the commissioning process our engineers will do an on-site training, to make the user’s engineers to real operate operation and routine maintenance on-site training to ensure operators can be more familiar with relevant knowledge and skills. 4. Acceptance: Once completed the equipment commissioning & training. Our after-sales service engineers and users or buyers together CHINAMFG acceptance report to confirm the equipment commissioning work has been completed. 5.Quality Warranty Shelf life: We promise 18-month warranty from the date of release from vendor’s factory premises but not more than 12-month warranty since successful commissioning and start-up at client’s project site, subject to whichever is due first. In case of any failure caused of the compressor itself due to its design, manufacture, assembly quality problem and etc. We will provide free maintenance service in a timely manner. 6.Technical support: Each compressor package with a related gas compressor ‘s operation manual & maintenance manual, detail design drawing, electric control system drawing, Manufacture test report etc. Please the user serious reading the detail before operate it. If there have any doubt for trial operation, parameter setting, failure alarm reset, etc, also welcome to email to us at      about your questions. We will do the best to answer you within 24 hours, and within 48 hours to provide the related solution with free technical support.

Our Factory

We have deals with customers all over the world. Thailand, Cambodia in Asia, Russia, the United Kingdom in Europe, Canada, Braziland the United States in America, all have our equipment.

Exhibition

 

Certifications

Customer Photos

There are multimodal transportation can be chosen from, such as sea transportation, air transportation, railway and land transportation, we will choose the most cost-effective transportation mode to deliver the goods. If having any special requirement, please feel free to contact us for arranging accordingly.

 

About us

Professional and technical personnel, serving customers online and solving problems.

1. In working days, reply within 24 hours.
2. Propose appropriate technical solutions according to customer’s customized needs.
3. Customize the compressor, Logo, outer packaging, pattern, etc.
4. Each compressor will be tested before leaving the factory.
5. After the order is confirmed, the relevant technical documents will be sent
6. On-time delivery and excellent after-sales service.
7. High quality and reliable price.

Due to regional time differences, customer service online hours are:
China ZheJiang Time 9AM-18:00PM
London Time 2AM-11AM
Pacific Time is 1AM-10AM the next day

 

Shipping and Packing

 

FAQ
1.How to get a prompt quotation of gas compressor ? 
1)Flow Rate/Capacity : ___ Nm3/h
2)Suction/ Inlet Pressure : ____ Bar
3)Discharge/Outlet Pressure :____ Bar
4)Gas Medium :_____
5)Voltage and Frequency : ____ V/PH/HZ

2.How long is delivery time ?
Delivery time is around the 30-90 days . 

3.What about the voltage of products? Can they be customized?
Yes, the voltage can be customized according to your inquire. 

4.Can you accept OEM orders?
Yes, OEM orders is highly welcome.

5.Will you provide some spare parts of the machines?
Yes, we will .

We also can design piston reciprocating compressors according to clients’ parameters to satisfy client’s local environment and
different needs. More detailed information can be provided with further communication.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Provide After-Sell Sevice
Warranty: 18 Months
Principle: Reciprocating Compressor
Application: High Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof
Mute: Mute
Customization:
Available

|

air compressor

What Is the Noise Level of Gas Air Compressors?

The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:

1. Compressor Design:

The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.

2. Engine Type:

The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.

3. Operating Conditions:

The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.

4. Noise-Reducing Features:

Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.

5. Manufacturer Specifications:

Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.

6. Distance and Location:

The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.

It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.

Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.

air compressor

What Is the Role of Air Receivers in Gas Air Compressor Systems?

Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:

1. Storage and Stabilization:

The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.

By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.

2. Pressure Regulation:

Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.

Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.

3. Condensate Separation:

During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.

4. Energy Efficiency:

Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.

The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.

5. Air Quality Improvement:

Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.

In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.

air compressor

Are There Different Types of Gas Air Compressors Available?

Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:

1. Reciprocating Gas Air Compressors:

Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.

2. Rotary Screw Gas Air Compressors:

Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.

3. Rotary Vane Gas Air Compressors:

Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.

4. Centrifugal Gas Air Compressors:

Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.

5. Oil-Free Gas Air Compressors:

Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.

6. Portable Gas Air Compressors:

Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.

7. High-Pressure Gas Air Compressors:

High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.

8. Biogas Air Compressors:

Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.

These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.

China OEM Carbon Dioxide CO2 Co Gas Booster High Pressure Diaphragm Compressor for Industrial   air compressor CHINAMFG freightChina OEM Carbon Dioxide CO2 Co Gas Booster High Pressure Diaphragm Compressor for Industrial   air compressor CHINAMFG freight
editor by CX 2024-04-30

China Custom Oil Free Small Hydrogen Gas Compressor Manufacturer air compressor for sale

Product Description

                         Reciprocating Micro-Oil Oil-free Piston Compressor

                                      ( Blue Font To View Hyperlink)

Our company specialize in making various kinds of compressors, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.

This series of oil-free compressor is one of the first products produced by our factory in China. The product has the characteristics of low speed, high component strength, stable operation, long service life and convenient maintenance. This series compressor is in the form of unit. It integrates compressor, gas-liquid separator, filter, 2 position four-way valve, safety valve, check valve, explosion-proof motor and chassis. The utility model has the advantages of small volume, light weight, low noise, good sealing performance, easy installation, simple operation, etc.

Main components
1.  Motion system: crankshaft, piston connecting rod assembly, coupling, etc.
2.  Air distribution system: valve plate, valve spring, etc.
3. Sealing system: piston ring, oil seal, gasket, packing, etc.

4. Body system: crankcase, cylinder block, cylinder liner, cover plate, etc.
5. Lubrication system: lubricating oil pump, oil filter, pressure regulating valve, etc.;
6Safety and energy regulation systems: safety valves, energy regulation devices, etc.

Working principle of piston compressor
When the crankshaft of the piston compressor rotates, the piston will reciprocate through the transmission of the connecting rod, and the working volume formed by the inner wall of the cylinder, the cylinder head and the top surface of the piston will periodically change. When the piston of a piston compressor starts to move from the cylinder head, the working volume in the cylinder gradually increases. At this time, the gas flows along the intake pipe and pushes the intake valve to enter the cylinder until the working volume reaches the maximum. , The intake valve is closed; when the piston of the piston compressor moves in the reverse direction, the working volume in the cylinder is reduced, and the gas pressure is increased. When the pressure in the cylinder reaches and is slightly higher than the exhaust pressure, the exhaust valve opens and the gas is discharged from the cylinder , Until the piston moves to the limit position, the exhaust valve is closed. When the piston of the piston compressor moves in the reverse direction again, the above process repeats. In short, the crankshaft of a piston compressor rotates once, the piston reciprocates once, and the process of air intake, compression, and exhaust is realized in the cylinder, which completes a work cycle.

Advantages of piston compressor
1. The applicable pressure range of the piston compressor is wide, and the required pressure can be reached regardless of the flow rate;
2. The piston compressor has high thermal efficiency and low unit power consumption;
3. Strong adaptability, that is, a wide exhaust range, and is not affected by the pressure level, and can adapt to a wider pressure range and cooling capacity requirements;
4. Piston compressors have low requirements for materials, and use common steel materials, which is easier to process and lower in cost;
5. The piston compressor is relatively mature in technology, and has accumulated rich experience in production and use;
6. The device system of the piston compressor is relatively simple.

Note: In the unloading process, the compressor pressurizes the gas from the storage tank and then presses it into the tank car through the gas-phase pipeline, and presses the liquid from the tank car to the storage tank through the gas-phase differential pressure to complete the unloading process. When the gas phase is pressurized, the temperature of the gas phase will rise. At this time, forced cooling is not necessary, because if the gas phase is compressed and then cooled, it is easy to liquefy, and it is difficult to establish the pressure difference of the gas phase, which is not conducive to the replacement of the gas phase and the liquid phase. In short, it will cause the prolongation of the unloading process. If it is necessary to recover the residual gas, the cooler can be selected to forcibly cool the gas phase during the recovery operation, so as to recover the residual gas as soon as possible.The loading process is opposite to the unloading process.

Chemical Process Compressor Description 
Chemical process compressors refer to process reciprocating piston compressors used to compress various single or mixed media gases in petroleum and chemical processes, as well as chemical exhaust gas recycling systems. Its main function is to transport the medium gas in the reaction device and provide the required pressure to the reaction device. Features 1. Designed for specific process flow. 2. The whole machine is skid-mounted and advanced in structure. 3. The compressor types are: Z type, D type, M type. 4. The middle body of the slideway and the cylinder can be designed in different structural forms according to the process requirements.

Reference Technical parameters and specifications

  Model Volume flow(Nm3/h) Suction pressure(Mpa) Exhaust pressure (Mpa) Motor power(kw) Dimension (mm)
1 ZW-0.4/ 2-250 60 0.2 25 18.5 2800*2200*1600
2 ZW-0.81/ (1~3)-25 120 0.1~0.3 2.5 22 1000*580*870
3 DW-5.8/0.5-5 400~500 0.05 0.5 37 2000*1600*1200
4 DW-10/2 510 Atmospheric pressure 0.2 37 2000*1600*1200
5 DW-6.0/5 300 Atmospheric pressure 0.5 37 2000*1600*1200
6 DW-0.21/(20~30)-250 270 2~3 25 45 3200*2200*1600
7 ZW-0.16/60-250 480 6 25 45 3000*2200*1600
8 ZW-0.46 /(5~10)-250 200 0.5~1.0 25 45 3000*2200*1600
9 DW-1.34/2-250 208 0.2 25 55 3400*2200*1600
10 DW-0.6/24-85 720 2.4 8.5 55 2200*1600*1200
11 ZW-2.9/14.2-20 220 1.42 2 55 2200*1600*1200
12 VW-2.0/(2~4)-25 410 0.2~0.4 2.5 55 3400*2200*1600
13 DW-0.85/(3~4)-250 180 0.3~0.4 25 55 2400*1800*1500
14 DW-25-(0.2~0.3)-1.5 1620 0.02~0.03 0.15 75 2400*1800*1500
15 VW-8.0/0.3-25 540 0.03 2.5 90 2400*1800*1500
16 DW-6.8/0.05-40 200~400 0.005 4 90 2400*1800*1500

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Horizontal
Structure Type: Closed Type
Compress Level: Double-Stage
Customization:
Available

|

air compressor

What Is the Typical Lifespan of a Gas Air Compressor?

The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:

1. Quality of the Compressor:

The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.

2. Usage Patterns:

The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.

3. Maintenance Practices:

Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.

4. Environmental Conditions:

The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.

5. Proper Installation and Operation:

Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.

Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.

Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.

air compressor

Can Gas Air Compressors Be Used in Agriculture?

Yes, gas air compressors can be used in various agricultural applications. Here’s a detailed explanation:

1. Pneumatic Tools and Equipment:

Gas air compressors can power a wide range of pneumatic tools and equipment used in agriculture. These tools include pneumatic drills, impact wrenches, nail guns, staplers, and pneumatic pumps. Gas air compressors provide the necessary compressed air to operate these tools, making various tasks more efficient and convenient on the farm.

2. Irrigation Systems:

Gas air compressors can be used to power irrigation systems in agriculture. They can supply compressed air to operate pneumatic valves, which control the flow of water in irrigation networks. Gas air compressors ensure reliable and efficient operation of irrigation systems, facilitating the distribution of water to crops in a controlled manner.

3. Grain Handling and Storage:

Air compressors play a vital role in grain handling and storage facilities. They are used to power aeration systems that provide airflow to grains stored in silos or bins. Aeration helps control the temperature and moisture levels, preventing spoilage and maintaining grain quality. Gas air compressors provide the airflow necessary for effective aeration in grain storage operations.

4. Cleaning and Maintenance:

In agriculture, gas air compressors are commonly used for cleaning and maintenance tasks. They can power air blowers or air guns to remove dust, debris, or chaff from machinery, equipment, or storage areas. Gas air compressors provide a high-pressure stream of compressed air, facilitating efficient cleaning and maintenance operations.

5. Livestock Operations:

Gas air compressors find applications in livestock operations as well. They can power pneumatic equipment used for animal care, such as pneumatic nail guns for building or repairing livestock enclosures, pneumatic pumps for water distribution, or pneumatic tools for general maintenance tasks.

6. Portable and Versatile:

Gas air compressors are often portable and can be easily transported around the farm, allowing flexibility in agricultural operations. Their versatility makes them suitable for various tasks, from powering tools and equipment in the field to providing compressed air for maintenance or cleaning in different farm locations.

7. Remote Locations:

In agricultural settings where access to electricity may be limited, gas air compressors offer a reliable alternative. They can be powered by gasoline or diesel engines, providing compressed air even in remote areas without electrical infrastructure.

8. Considerations:

When using gas air compressors in agriculture, it is essential to consider factors such as compressor size, capacity, and maintenance requirements. Selecting the right compressor based on the specific needs of the agricultural applications ensures optimal performance and efficiency.

In summary, gas air compressors have various applications in agriculture. They can power pneumatic tools and equipment, operate irrigation systems, facilitate grain handling and storage, assist in cleaning and maintenance tasks, support livestock operations, and offer portability and versatility. Gas air compressors contribute to increased efficiency, convenience, and productivity in agricultural operations.

air compressor

What Are the Primary Applications of Gas Air Compressors?

Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:

1. Construction Industry:

Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.

2. Agriculture and Farming:

Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.

3. Recreational Activities:

Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.

4. Mobile Service Operations:

Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.

5. Remote Job Sites:

Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.

6. Emergency and Backup Power:

In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.

7. Sandblasting and Surface Preparation:

Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.

8. Off-Road and Outdoor Equipment:

Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.

Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.

China Custom Oil Free Small Hydrogen Gas Compressor Manufacturer   air compressor for saleChina Custom Oil Free Small Hydrogen Gas Compressor Manufacturer   air compressor for sale
editor by CX 2024-04-27

China supplier Biogas Compressor Industrial CNG Sub-Station Diaphragm Compressor for Gas Pressurization air compressor CHINAMFG freight

Product Description

Our company specialize in making various kinds of compressors, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.

Process principle
Diaphragm compressor according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.
Main Structure
Diaphragm compressor structure is mainly composed of motor, base, crankcase, crankshaft linkage mechanism, cylinder components, crankshaft connecting rod, piston, oil and gas pipeline, electric control system and some accessories.
Gas Media Type
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc.(Nitrogen diaphragm compressor,bottle filling compressor,oxygen diaphragm compressor)

Advantages

  1. Good Sealing Performance .
  2. Cylinder has good heat dissipation performance .
  3. Completely Oil-free , the gas purity can be guaranteed to be higher than 99.999% .
  4. High Compression Ratios, High discharge pressure up to 1000bar .
  5. Long service life ,more than 20 years .

     Lubrication includes : oil free lubrication and splash lubrication
     Cooling method includes: Water cooling and air cooling.
     Type includes: V-type, L-type,D-type,Z-type


GD Model Simple Description
GD diaphragm compressor is a special structure of the volumetric compressor, is the highest level of compression in the field of gas compression, this compression method Without secondary pollution, it can ensure the purity of gas is more than 5, and it has very good protection against compressed gas. It has the characteristics of large compression ratio, good sealing performance, and the compressed gas is not polluted by lubricating oil and other CHINAMFG impurities. Therefore, it is suitable for compressing high-purity, rare and precious, flammable, explosive, toxic, harmful, corrosive and high-pressure gases. The compression method is generally specified in the world for compressing high-purity gas, flammable and explosive gas, toxic gas and oxygen. Etc. (such as nitrogen diaphragm compressor, oxygen diaphragm compressor, hydrogen sulfide diaphragm compressor, argon diaphragm compressor, etc.).
GD diaphragm compressor for my company independent research and development of large diaphragm compressor, its advantages are: high compression ratio, large displacement, large piston force, stable running, high exhaust pressure, etc, has been widely used and petroleum chemical industry and nuclear power plant, and so on,.Two GD type diaphragm compressor cylinder arrangement for symmetrically arranged in parallel, more suitable for the petrochemical and nuclear power plant such as uninterrupted operation for a long time, because of the cylinder body symmetry, run up against other arrangement of diaphragm compressor is the most stable operation, running, small vibration from the ground clearance is more convenient in maintenance.
Advantages
1.Good sealing performance
Diaphragm compressor is a kind of special structure displacement compressor.The gas does not need lubrication,the sealing performance is good,the compression medium does not contact with any lubricant,and there will be no pollution in the compression process.It is especially suitable for high purity(99.9999%),rate,extremely corrosive,toxic and harmful,inflammable and explosive.Compression,transportation and bottle filling of radioactive gases.Membrane head is sealed with inlaid double O-ring,and its sealing effect is far better than that of open type.
2.Cylinder has good heat dissipation performance
The working cylinder of diaphragm compressor has good heat dissipation performance and is close to isothermal compression.It can adopt higher compression ratio and is suitable for compressing high-pressure gas.
3.Compressor speed is low and service life of vulnerable parts is prolonged.The new type of diaphragm cavity curve improve the volume efficiency of the compressor,optimize the value type,and adopt special heat treatment method for diaphragm,which greatly improves the service life of the compressor.
4.The high efficiency cooler is adopted,which makes the whole machine low in temperature and high in efficiency.The service life of lubricating oil,O-ring and value spring can be prolonged appropriately .Under the condition of meeting the buyer’s technological parameters,the structure is more advanced,reasonable and energy-saving.
5.The diaphragm rupture alarm structure is advanced,reasonable and reliable.The diaphragm installation has no directionality and is easy to replace.
6.The parts and components of the whole equipment are concentrated on a skid-mounted chassis,which is convenient for transportation,installation and management.
 

 Reference Specification Table 
  Model Cooling water 
consumption
t/h
Volume Flow
Nm3/h
Suction pressure
(MPa)
Exhaust pressure
(MPa)
Dimension 
LxWxH(mm)
Weight
(t)
Motor Power 
(kW)
1 GD-120/4-80 3.0 120 0.4 8.0 3000x1600x1400   30
2 GD-130/0.98-11 3.0 130 0.098 1.1 3000x1800x1600 4.0 30
3 GD-150/2-20 3.0 150 0.2 2.0 3000x1800x1600 4.0 37
4 GD-100/0.1-5 4.0 100 0.01 0.5 2800X1500X1500 3.0 18.5
5 GD-100/5.5-200 5.0 100 0.55 20 3200X2000X1600 4.5 45
6 GD-80/0.12-4 5.0 80 0.012 0.4 2800x1600x 1500 3.8 15
7 GD-60/0.3-6 4.0 60 0.03 0.6 2800x1600x1500 4.0 15
8 GD-70/0.1-8 3.8 70 0.01 0.8 3000 x 1600×1250 5.0 18.5
9 GD-40/0.02-160 5.0 40 0.02 16 2800x1460x1530 3.0 22
10 GD-100/0.5-6 2.0 100 0.05 0.6 3000x2000x1560 6.0 18.5
11 GD-36/1-150 4.0 36 0.1 15 3000x1500x1500 4.0 45
12 GD-35/0.7-300 4.0 35 0.07 30 3000x1600x1500 4.0 22
13 GD-500/15-35 4.5 500 1.5 3.5 3000x2000x1700 4.0 45
14 GD-150/15-210 4.5 150 1.5 21 3200x1700x1600 4.0 45
15 GD-120/8-220 4.5 120 0.8 22 3200x1700x1600 3.8 45
16 GD-100/9 4.5 100 0.0 0.9 3200x1700x1800 4.5 22
17 GD-100/1.5-150 4.5 100 0.15 15 3200x1700x1800 4.5 45
18 GD-40/30 4.5 40 0.0 3.0 3200x1700x1800 4.0 18.5
19 GD-200/10-15-90 4.5 200 1.0-1.5 9.0 3200x1800x1600 4.0 37
20 GD-100/7-150 4.0 100 0.7 15 3000x1800x 1600 4.0 55
21 GD-25/-0.1-47 4.0 25 -0.01 4.7 3000x1800x1600 4.0 15
22 GD-45/0.5-100 4.0 45 0.05 10 3000x1800x1600 4.0 30
23 GD-30/0.1-160 4.0 30 0.01 16 3000x1800x1600 4.0 18.5
24 GD-120/2.5-70 4.0 120 0.25 7.0 3000x1800x1600 4.0 37
25 GD-135/10-210 4.0 135 1.0 21 3000x1600x1400 4.0 37
26 GD-60/40-350 4.5 60 4.0 35 3000x1800x1600 4.0 30
27 GD-95/10-350 4.0 95 1.0 35 3000x1600x1400 4.0 37
28 GD-220/11-90 4.0 220 1.1 9.0 3000x1800x1600 4.0 37
29 GD-300/15-220 4.5 300 1.5 22 3600x2200x1700 5.0 75
30 GD-300/13-210 5.0 300 1.3 21 3500x2300x1800 6.0 75
31 GD-120/12-350 6.5 120 1.2 35 3500x2300x1600 8.5 45
32 GD-165/10-250 8.0 165 1.0 25 3500x2300x1500 8.5 55
33 GD-120/8-350 6.5 120 0.8 35 3500x2300x1600 8.5 45
34 GD-800/210-320 8.0 800 21 32 3500x2300x1500 8.5 37
35 GD-420/8-39 6.5 420 0.8 3.9 3600x2500x1700 6.0 75
36 GD-370/20-200 4.5 370 2.0 20 3600x2200x1700 5.0 75
37 GD-350/18-210 4.5 350 1.8 21 3600x2200x1700 5.0 75
38 GD-300/8-120 4.5 300 0.8 12 3600 x 2200 x 1700 5.0 75
39 GD-308/4 10.0 308 0 0.4 4200x3200x2600 10.0 55
40 GD-180/8.5 5.0 180 0 0.85 4200x3200x2600 10.0 55

 

Customized is accepted , Pls provide the following information to us ,then we will do the technical proposal and best price to you.
1.Flow rate:  _______Nm3/h
2.Gas Media : ______ Hydrogen or Natural Gas or Oxygen or other gas 
3.Inlet pressure: ___bar(g)
4.Inlet temperature:_____ºC
5.Outlet pressure:____bar(g)
6.Outlet temperature:____ºC
7.Installation location: _____indoor or outdoor
8.Location ambient temperature: ____ºC
9.Power supply:  _V/  _Hz/ _3Ph
10.Cooling method for gas: air cooling or water cooing
 

 

Picture Dispaly

 

Company strength display

HangZhou CHINAMFG Gas Equipment Co., Ltd. is a manufacturer engaged in the research and development, design and production of gas compressors. The company has its own production technology, processing equipment and assembly technology, and has many years of experience in the production of various flammable and explosive special gas compressors.

CHINAMFG compressor products cover almost all gas media, up to 6th-stage compression and 3000kw power. Products can be customized according to customer requirements to better meet customer needs. The products are mainly used in gas compressors in the petroleum industry, chemical and natural gas compressors, industrial compressors, compressors for waste gas treatment and biogas utilization, and compressors for special gases.

After Sales Service
1.Quick response within 2 to 8 hours, with a reaction rate exceeding 98%;
2. 24-hour telephone service, please feel free to contact us;
3. The whole machine is guaranteed for 1 year (excluding pipelines and human factors);
4. Provide consulting service for the service life of the whole machine, and provide 24-hour technical support via email;
5. On-site installation and commissioning by our experienced technicians;

Exhibition Display

 

Certificate display

Packaging and Shipping

 

FAQ
1.How to get a prompt quotation of gas compressor ?
1)Flow Rate/Capacity : ___ Nm3/h
2)Suction/ Inlet Pressure : ____ Bar
3)Discharge/Outlet Pressure :____ Bar
4)Gas Medium :_____
5)Voltage and Frequency : ____ V/PH/HZ

2.How long is delivery time ?
Delivery time is around the 30-90 days .

3.What about the voltage of products? Can they be customized?
Yes, the voltage can be customized according to your inquire.

4.Can you accept OEM orders?
Yes, OEM orders is highly welcome.

5.Will you provide some spare parts of the machines?
Yes, we will .
 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 18month
Principle: Displacement Compressor
Application: High Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof, Corrosion-Proof
Mute: Low Noise
Lubrication Style: Oil-free
Customization:
Available

|

air compressor

What Is the Noise Level of Gas Air Compressors?

The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:

1. Compressor Design:

The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.

2. Engine Type:

The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.

3. Operating Conditions:

The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.

4. Noise-Reducing Features:

Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.

5. Manufacturer Specifications:

Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.

6. Distance and Location:

The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.

It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.

Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.

air compressor

Can Gas Air Compressors Be Used in Agriculture?

Yes, gas air compressors can be used in various agricultural applications. Here’s a detailed explanation:

1. Pneumatic Tools and Equipment:

Gas air compressors can power a wide range of pneumatic tools and equipment used in agriculture. These tools include pneumatic drills, impact wrenches, nail guns, staplers, and pneumatic pumps. Gas air compressors provide the necessary compressed air to operate these tools, making various tasks more efficient and convenient on the farm.

2. Irrigation Systems:

Gas air compressors can be used to power irrigation systems in agriculture. They can supply compressed air to operate pneumatic valves, which control the flow of water in irrigation networks. Gas air compressors ensure reliable and efficient operation of irrigation systems, facilitating the distribution of water to crops in a controlled manner.

3. Grain Handling and Storage:

Air compressors play a vital role in grain handling and storage facilities. They are used to power aeration systems that provide airflow to grains stored in silos or bins. Aeration helps control the temperature and moisture levels, preventing spoilage and maintaining grain quality. Gas air compressors provide the airflow necessary for effective aeration in grain storage operations.

4. Cleaning and Maintenance:

In agriculture, gas air compressors are commonly used for cleaning and maintenance tasks. They can power air blowers or air guns to remove dust, debris, or chaff from machinery, equipment, or storage areas. Gas air compressors provide a high-pressure stream of compressed air, facilitating efficient cleaning and maintenance operations.

5. Livestock Operations:

Gas air compressors find applications in livestock operations as well. They can power pneumatic equipment used for animal care, such as pneumatic nail guns for building or repairing livestock enclosures, pneumatic pumps for water distribution, or pneumatic tools for general maintenance tasks.

6. Portable and Versatile:

Gas air compressors are often portable and can be easily transported around the farm, allowing flexibility in agricultural operations. Their versatility makes them suitable for various tasks, from powering tools and equipment in the field to providing compressed air for maintenance or cleaning in different farm locations.

7. Remote Locations:

In agricultural settings where access to electricity may be limited, gas air compressors offer a reliable alternative. They can be powered by gasoline or diesel engines, providing compressed air even in remote areas without electrical infrastructure.

8. Considerations:

When using gas air compressors in agriculture, it is essential to consider factors such as compressor size, capacity, and maintenance requirements. Selecting the right compressor based on the specific needs of the agricultural applications ensures optimal performance and efficiency.

In summary, gas air compressors have various applications in agriculture. They can power pneumatic tools and equipment, operate irrigation systems, facilitate grain handling and storage, assist in cleaning and maintenance tasks, support livestock operations, and offer portability and versatility. Gas air compressors contribute to increased efficiency, convenience, and productivity in agricultural operations.

air compressor

What Safety Precautions Should Be Taken When Operating Gas Air Compressors?

Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:

1. Read and Follow the Manufacturer’s Instructions:

Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.

2. Provide Adequate Ventilation:

Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.

3. Wear Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.

4. Perform Regular Maintenance:

Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.

5. Preventive Measures for Fuel Handling:

If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:

  • Store fuel in approved containers and in well-ventilated areas away from ignition sources.
  • Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
  • Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
  • Never smoke or use open flames near the compressor or fuel storage areas.

6. Use Proper Electrical Connections:

If the gas air compressor requires electrical power, follow these electrical safety precautions:

  • Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
  • Avoid using extension cords unless recommended by the manufacturer.
  • Inspect electrical cords and plugs for damage before use.
  • Do not overload electrical circuits or use improper voltage sources.

7. Secure the Compressor:

Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.

8. Familiarize Yourself with Emergency Procedures:

Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.

It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.

China supplier Biogas Compressor Industrial CNG Sub-Station Diaphragm Compressor for Gas Pressurization   air compressor CHINAMFG freightChina supplier Biogas Compressor Industrial CNG Sub-Station Diaphragm Compressor for Gas Pressurization   air compressor CHINAMFG freight
editor by CX 2024-04-26

China best Gd-100/1.5-150 AC Power Stationary pH3 Phosphine Gas Diaphragm Compressor air compressor for sale

Product Description

Reciprocating Completely Oil-Free Diaphragm Compressor
( Blue Font To View Hyperlink)

 

Our company specialize in producing various kinds of compressor products, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.

Process Principle
Diaphragm compressor according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.

Main Structure
Diaphragm compressor structure is mainly composed of motor, base, crankcase, crankshaft linkage mechanism, cylinder components, crankshaft connecting rod, piston, oil and gas pipeline, electric control system and some accessories.

Gas Media 
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc.(Nitrogen diaphragm compressor,bottle filling compressor,oxygen diaphragm compressor)

GD Model Simple Description
GD diaphragm compressor is a special structure of the volumetric compressor, is the highest level of compression in the field of gas compression, this compression method Without secondary pollution, it can ensure the purity of gas is more than 5, and it has very good protection against compressed gas. It has the characteristics of large compression ratio, good sealing performance, and the compressed gas is not polluted by lubricating oil and other CHINAMFG impurities. Therefore, it is suitable for compressing high-purity, rare and precious, flammable, explosive, toxic, harmful, corrosive and high-pressure gases. The compression method is generally specified in the world for compressing high-purity gas, flammable and explosive gas, toxic gas and oxygen. Etc. (such as nitrogen diaphragm compressor, oxygen diaphragm compressor, hydrogen sulfide diaphragm compressor, argon diaphragm compressor, etc.).

GD diaphragm compressor for my company independent research and development of large diaphragm compressor, its advantages are: high compression ratio, large displacement, large piston force, stable running, high exhaust pressure, etc, has been widely used and petroleum chemical industry and nuclear power plant, and so on,.Two GD type diaphragm compressor cylinder arrangement for symmetrically arranged in parallel, more suitable for the petrochemical and nuclear power plant such as uninterrupted operation for a long time, because of the cylinder body symmetry, run up against other arrangement of diaphragm compressor is the most stable operation, running, small vibration from the ground clearance is more convenient in maintenance.

Advantages
No leakage: the compressor membrane head is sealed by static “O” ring. The O “ring is made of elastic material, with long service life and no dynamic seal to ensure no leakage during gas compression.
Corrosion resistance: the compressor membrane head can be made of 316L stainless steel, the diaphragm is made of 301 stainless steel.
Small tightening torque: “O” ring seal, can reduce flange bolt tightening torque, reduce shutdown maintenance time.

Reference Operating Parameter:

Model GD-120/4-80 Remarks
Volume Flow Nm3/h 120 No-Standard
Working pressure Suction pressure: 0.4MPa No-Standard
  Exhaust pressure: 8.0MPa No-Standard
Cooling Method    Water-Cooled  No-Standard
Intake temperature °C 0~30  
Inlet pressure MPa 0.3~0.4  
Discharge temperature °C ≤45ºC  
Noise dB(A) ≤80  
Power/Frequence V/Hz 380/50 No-Standard
Motor Power Kw 22KW~200KW No-Standard
Crankshaft speed r/min 420  
Overall dimension L/mm 3000  
  W/mm 1600  
  H/mm 1400  

Reference Specification

1 GD-120/4-80 3.0 120 0.4 8.0 3000x1600x1400   30
2 GD-130/0.98-11 3.0 130 0.098 1.1 3000x1800x1600 4.0 30
3 GD-150/2-20 3.0 150 0.2 2.0 3000x1800x1600 4.0 37
4 GD-100/0.1-5 4.0 100 0.01 0.5 2800X1500X1500 3.0 18.5
5 GD-100/5.5-200 5.0 100 0.55 20 3200X2000X1600 4.5 45
6 GD-80/0.12-4 5.0 80 0.012 0.4 2800x1600x 1500 3.8 15
7 GD-60/0.3-6 4.0 60 0.03 0.6 2800x1600x1500 4.0 15
8 GD-70/0.1-8 3.8 70 0.01 0.8 3000 x 1600×1250 5.0 18.5
9 GD-40/0.02-160 5.0 40 0.02 16 2800x1460x1530 3.0 22
10 GD-100/0.5-6 2.0 100 0.05 0.6 3000x2000x1560 6.0 18.5
11 GD-36/1-150 4.0 36 0.1 15 3000x1500x1500 4.0 45
12 GD-35/0.7-300 4.0 35 0.07 30 3000x1600x1500 4.0 22
13 GD-500/15-35 4.5 500 1.5 3.5 3000x2000x1700 4.0 45
14 GD-150/15-210 4.5 150 1.5 21 3200x1700x1600 4.0 45
15 GD-120/8-220 4.5 120 0.8 22 3200x1700x1600 3.8 45
16 GD-100/9 4.5 100 0.0 0.9 3200x1700x1800 4.5 22
17 GD-100/1.5-150 4.5 100 0.15 15 3200x1700x1800 4.5 45
18 GD-40/30 4.5 40 0.0 3.0 3200x1700x1800 4.0 18.5

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Principle: Reciprocating Compressor
Application: High Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof
Mute: Mute
Lubrication Style: Lubricated
Drive Mode: Electric
Customization:
Available

|

air compressor

What Is the Fuel Efficiency of Gas Air Compressors?

The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:

1. Engine Design and Size:

The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.

2. Load Capacity and Usage Patterns:

The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.

3. Maintenance and Tuning:

Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.

4. Operating Conditions:

The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.

5. Fuel Type:

The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.

6. Operator Skills and Practices:

The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.

It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.

Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.

air compressor

How Do You Transport Gas Air Compressors to Different Job Sites?

Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:

1. Equipment Size and Weight:

The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.

2. Transportation Modes:

Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:

  • Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
  • Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
  • Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.

3. Securing and Protection:

It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.

4. Permits and Regulations:

Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.

5. Route Planning:

Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.

6. Equipment Inspection and Maintenance:

Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.

In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.

air compressor

What Fuels Are Commonly Used in Gas Air Compressors?

Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:

1. Gasoline:

Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.

2. Diesel:

Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.

3. Natural Gas:

Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.

4. Propane:

Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.

5. Biogas:

In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.

It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.

China best Gd-100/1.5-150 AC Power Stationary pH3 Phosphine Gas Diaphragm Compressor   air compressor for saleChina best Gd-100/1.5-150 AC Power Stationary pH3 Phosphine Gas Diaphragm Compressor   air compressor for sale
editor by CX 2024-04-25

China high quality Zw-1.0/2-5 Low Pressure 5bar LPG Liquid Pump LPG LNG Gas Booster Compressor best air compressor

Product Description

Product Description

LPG LNG storage tank LPG compressor Ammonia Reciprocating Piston Compressor 

ZW series Oil-Free LPG Gas Compressor, it has many functions, small volume, lightweight, small power, stable and reliable operation, and has good safety performance. It can transport highly volatile liquid such as liquefied petroleum gas and recover the gas left in the tank, Liquid Natural Gas. Due to the unique oil-free lubrication design, there is no need for oil lubrication in the cylinder, so it will not pollute the medium (ensure the purity of gas) and keep the transported substances pure.

Excellent complement, satisfied performance, light weight, small occupying area, more compressing ratio, smooth running, long service life of spare parts, simple operation, reliability and easy maintenance. ZW series compressors have both fixed or movable types; both normal atmosphere (0.1~1.5MPa) and high pressure (1.6~2.4MPa) to meet different requirements of customers.
 

Product Parameters

LPG Compressor Technical Parameters
 
Model Flow rate m3/min Inlet pressure (MPa) Discharge pressure (MPa) Motor power (Kw)
ZW-0.6/10-16 0.6 1.0 1.6 7.5
ZW-0.8/10-16 0.8 1.0 1.6 11
ZW-1.0/10-16 1.0 1.0 1.6 15
ZW-1.3/10-16 1.3 1.0 1.6 18.5
ZW-1.5/10-16 1.5 1.0 1.6 22
ZW-2.0/10-16 2.0 1.0 1.6 30
ZW-2.5/10-16 2.5 1.0 1.6 37
ZW-3.0/10-16 3.0 1.0 1.6 45
ZW-4.0/10-16 4.0 1.0 1.6 55
ZW-8.0/10-16 8.0 1.0 1.6 110
ZW-1.0/1-10 1.0 0.1 1.0 15
ZW-1.0/2-5 1.0 0.2 0.5 7.5
The above models are commonly used and can be customized according to  each industry plant’s different requirements.
The above data are calculated according to: 
Inlet pressure: ≤ 1.0Mpa; 
Exhaust pressure: ≤ 1.6Mpa; 
Maximum pressure difference: 0.6Mpa; 
Maximum instantaneous pressure ratio: ≤6 
Cooling mode: air cooling or water cooling (according to end user’s local conditions to design); 
Inlet temperature: 40ºC; 
Liquid density of liquefied gas: 582.5kg/m3. 

Basis Design Data

1 The compressor was adopted vertical type single-stage reciprocating piston compressor.

2. Cool Method: air-cooled.

3. Cylinder and packing stuff box all designed oil-free lubrication

4. Valves type is mesh valve

5. Compressor and motor direct driven by tire-type, with whole closed protection cover

6. Compressor set a manual turning mechanism structure

7. The compressor was set automatic stop control system once discharge pressure is higher than the set value

Detailed Photos

 

Our Advantages

Main purpose and scope of Application

This series of compressors are mainly used for loading, unloading, tank pouring, residual gas recovery, tank vehicle loading, unloading, bottle filling, bottle emptying, conveying, residue removal and residual gas recycling and it can be also used in the processes of other petrol-industries, residual liquid recovery and other operations of LPG. They are ideal equipment for liquid transportation and gas recovery. Therefore, it is widely used in LPG storage and distribution station, gas mixing station, gasification station, tank plant, automobile filling station, etc., especially in large, medium and small LPG stations.

In addition, it is suitable for liquid transportation and residual gas recovery of propane, butane, butene and other volatile substances with low boiling point. Its variant products can be used for liquid transportation and gas recovery of propylene, liquid ammonia, etc.

Technical Paramter

No. Item Specification
1 Compressor Model ZW-0.95/10-15 
2 Compress  medium LPG Gas
3 Structure Vertical Type, Air Cooking, Single action  
4 Compress stage number single stage
5 volume capacity (F.A.D)   0.95 m3/min
6 Suction pressure   1.0Mpa
7 Discharge pressure   1.5Mpa
8 Suction temperature  ≤40ºC
9 Discharge temperature ≤110ºC
10 Compressor speed(r/min) 740rpm
11 Motor Power  11KW    explosion-proof motor: dIIBT4
12 Cooling method Air Cooling
13 Lubricate method Crank case, Crankshaft, Connect rod, Crosshead Splash lubrication
Cylinder, filling   Oil free lubrication
14 Driven Method Belt driven
15 Installation  with skid-board
16 Noise    85dB (A)
17 Vibration intensity 28
18 Dimension about 1220×680×980mm
19 Weight about 360KG
20 Scope of supply Compressor, motor, common underframe, gas pipeline, four-way valve, safety valve, instrument, random spare parts, factory documents, etc.

 

FAQ

 Q1: What’s your delivery time?
A: Generally 5-10 days if the goods are in stock. Or it is 20-35 days if the goods are not in stock, it is according to quantity.

Q2: How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary.

Q3: How long could your compressor machine be used?
A: Generally, design service life for 20years, According to real condition not less than 10 years.

Q4: Can you do OEM for us?
A: Yes, of course. We have around 2 decades OEM experience. And also we can do ODM for you.

Q5: What’s payment term?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, Trade Assurance and etc. Also, we could accept USD, RMB, GBP, Euro, and other currency.

Q6: How about your customer service?
A: 24 hours on-line service available. 48hours problem sovled promise.

Q7: How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service.

Q8. Are you factory?
A4: Absolutely! You have touched the primary sources of Air /Gas Compressor. We are factory.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1year
Warranty: 1year
Lubrication Style: Oil-free
Samples:
US$ 4800/Piece
1 Piece(Min.Order)

|

Order Sample

can be customized only 1pc
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How Do Gas Air Compressors Compare to Diesel Air Compressors?

When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:

1. Fuel Efficiency:

Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.

2. Power Output:

Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.

3. Cost:

In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.

4. Maintenance Requirements:

Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.

5. Environmental Impact:

When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.

6. Portability and Mobility:

Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.

It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.

In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.

air compressor

Can Gas Air Compressors Be Used for Natural Gas Compression?

Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:

1. Different Compressed Gases:

Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.

2. Safety Considerations:

Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.

3. Equipment Compatibility:

Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.

4. Efficiency and Performance:

Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.

5. Regulatory Compliance:

Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.

6. Industry Standards and Practices:

The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.

In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.

air compressor

What Is a Gas Air Compressor?

A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:

1. Power Source:

A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.

2. Portable and Versatile:

Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.

3. Compressor Pump:

The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.

4. Pressure Regulation:

Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.

5. Applications:

Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.

6. Maintenance and Fuel Considerations:

Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.

Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.

China high quality Zw-1.0/2-5 Low Pressure 5bar LPG Liquid Pump LPG LNG Gas Booster Compressor   best air compressorChina high quality Zw-1.0/2-5 Low Pressure 5bar LPG Liquid Pump LPG LNG Gas Booster Compressor   best air compressor
editor by CX 2024-04-10

China manufacturer CNG Oilless Type 120kw New Design Reciprocating Compressor for Gas Station air compressor for car

Product Description

Detailed Photos

 CNG Oilless Type 120kw New Design Reciprocating Compressor For Gas Station

Description&Advantages

Product Descriptions:

The gas station, which takes natural gas input through pipelines, increases the pressure on-site and then either directly fills or stores the gas in fixed storage cylinder groups (wells) for refueling CNG vehicles with CNG. The process system consists of a pressure regulation and metering device, desulfurization and dehydration equipment, a natural gas compressor, CNG storage facilities, a sequential control device, CNG refueling facilities, safety protection devices for refueling process equipment, electrical devices, CNG pipelines and components, etc

Advantages:
Our products, incorporating technology from Austria’s LMF and Germany’s CHINAMFG Demag companies, exhibit high reliability. Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor.  It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults

Product Parameters

 

Model Inlet Pressure
(Mpa)
Outlet Pressure
(Mpa)
Capacity
(Nm3/h)
Power
(Kw)
Remarks
ZF-0.16/6-250 0.6 25 68 22  
VF-2.4/8-250 0.8 25 1300 220  
VF-0.76/10-250 1.0 25 500 Q6135DR1  
VF-2.2/10-250 1.0 25 1452 220-8  
VF-3.2/(2.5-4)-250 0.25-0.4 25 670-1000 270  
VF-2/(10-16)-250 1.0-1.6 25 1320-2000 280  
VF-2.5/3-210 0.3 21 600 132  
VF-0.11/(70-200)-250 7-20 25 468-1326 30  
VF-2.5/(0.8-1.6)-250 0.08-0.16 25 270-390 90  
VF-2/(2-3)-250 0.2-0.3 25 360-480 110  
VF-1.1/(5-6)-250 0.5-0.6 25 396-462 90  
VF-0.54/30-250 3.0 25 1004 110  
VF-0.8/30-250 3.0 25 1488 160  
VF-0.28/(40-80)-250 4.0-8.0 25 688-1360 90  
VFD-0.36/(20-200)-250 2.0-20 25 680-2210 110 Soundproof Cabin
VFD-0.32/(20-200)-250 2.0-20 25 600-1700 90 Soundproof Cabin
VFD-0.28/(20-200)-250 2.0-20 25 525-1430 75 Soundproof Cabin
VFD-0.16/(20-200)-250 2.0-20 25 600 55 Soundproof Cabin
Note: This series of CNG refueling station compressors can be customized with the following parameters: Pressure: 0.2-20Mpa, Flow rate: 400-1200 Nm³/h.

Our Factory

 

Part of Customer Visit

 

Certifications & Testing

 

Related Product

 

FAQ

Q:Are you a factory?

A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.

Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.

Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.

Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products

Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
    For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard            against any potential damage during the shipping process.

Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.

Send message  Get product Offer & Brochure!!!

 ↓↓↓

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Local Teams
Warranty: 18 Months
Lubrication Style: Customized
Cooling System: Air Cooling/Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Customized
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used for High-Pressure Applications?

Gas air compressors can be used for high-pressure applications, but there are certain considerations to keep in mind. Here’s a detailed explanation:

Gas air compressors are available in various sizes and configurations, and their suitability for high-pressure applications depends on factors such as the compressor’s design, power output, and the specific requirements of the application. Here are some key points to consider:

1. Compressor Design:

Not all gas air compressors are designed to handle high-pressure applications. Some compressors are specifically built for low-to-medium pressure ranges, while others are designed to deliver higher pressure outputs. It is important to select a gas air compressor model that is rated for the desired pressure range. The compressor’s specifications and manufacturer’s guidelines will provide information on the maximum pressure it can generate.

2. Power Output:

The power output of a gas air compressor is a crucial factor in determining its suitability for high-pressure applications. High-pressure compressors require more power to achieve and sustain the desired pressure levels. It is important to ensure that the gas air compressor has sufficient power output to meet the demands of the specific high-pressure application.

3. Cylinder Configuration:

The cylinder configuration of the gas air compressor can also affect its ability to handle high-pressure applications. Compressors with multiple cylinders or stages are designed to generate higher pressures compared to compressors with a single cylinder. Multi-stage compressors compress the air in multiple steps, allowing for higher pressure ratios.

4. Safety Considerations:

High-pressure applications require careful attention to safety considerations. Gas air compressors used for high-pressure applications should be equipped with appropriate safety features such as pressure relief valves, pressure gauges, and safety shut-off systems. It is crucial to follow all safety guidelines and regulations to ensure safe operation.

5. Maintenance and Inspection:

Regular maintenance and inspection are essential for gas air compressors used in high-pressure applications. High-pressure operation can put additional stress on the compressor components, and proper maintenance helps ensure optimal performance and safety. Regular inspections and adherence to maintenance schedules will help identify and address any potential issues before they become major problems.

6. Application-specific Considerations:

Each high-pressure application may have specific requirements and considerations. It is important to evaluate factors such as the required pressure level, duty cycle, flow rate, and any specific environmental conditions that may impact the performance of the gas air compressor. Consulting with the compressor manufacturer or a qualified professional can help determine the suitability of a gas air compressor for a particular high-pressure application.

In summary, gas air compressors can be used for high-pressure applications, provided that they are designed, rated, and configured appropriately. It is essential to consider factors such as compressor design, power output, safety features, maintenance requirements, and application-specific considerations to ensure safe and reliable operation at high pressures.

air compressor

Can Gas Air Compressors Be Used for Sandblasting?

Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:

1. Compressed Air Requirement:

Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.

2. Portable and Versatile:

Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.

3. Pressure and Volume:

When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.

4. Compressor Size and Capacity:

The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.

5. Maintenance Considerations:

Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.

6. Safety Precautions:

When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.

In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.

air compressor

How Do You Choose the Right Size Gas Air Compressor for Your Needs?

Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:

1. Required Airflow:

Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.

2. Operating Pressure:

Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.

3. Duty Cycle:

Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.

4. Tank Size:

The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.

5. Power Source:

Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.

6. Portability:

Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.

7. Noise Level:

If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.

8. Manufacturer Recommendations:

Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.

By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.

China manufacturer CNG Oilless Type 120kw New Design Reciprocating Compressor for Gas Station   air compressor for carChina manufacturer CNG Oilless Type 120kw New Design Reciprocating Compressor for Gas Station   air compressor for car
editor by CX 2024-04-03