Tag Archives: air compressor oil

China high quality Booster Compressor for Oxygen Comprensor High Pressure Oil Free Oxygen Compressor air compressor for sale

Product Description

 

High Pressure Oxygen Compressor Water Cooling Air Cooling 150bar 200bar    
  

Product Introduction

Oxygen is a violent combustion improve that can easily cause burning and explosion. Special care should be taken when designing and using High Pressure Oxygen Compressor. Compressed gas parts are strictly prohibited from coming into contact with oil, cannot contaminated during maintenance, and must be cleaned with solvent before assembly.

 

Cape-Golden Advantage

Cape-Golden has been developing our High Pressure Oxygen Compressor system. When manufacturing every component that comes into contact with the gas, we follow strict oxygen cleaning guidelines and maintain a detailed cleaning record.

This High Pressure Oxygen Compressor is suitable for inlet pressure 3-4bar and discharge pressure 100-300bar.

The PSA air separation oxygen system with a flow rate of 100NM3-500NM3/hour can run continuously for 24 hours with our High Pressure Oxygen Compressor.

Oxygen Compressor Feature

The High Pressure Oxygen Compressor feature:

1. It adopts 4 stage compression 
2. Stainless steel cylinders, each with safety valve
3. The inlet is equipped with low intake pressure protection
4. The exhaust end is equipped with high exhaust pressure protection
5. Each stage has a temperature sensor, the system will alarm and stop if overpressure, ensure safe operation,
6. Forklift parking position at the bottom, can be easily moved

 

Technical Specification

No. Item Data
1 Working medium Oxygen
2 Model GOW-30/4-200
3 Structure oil free reciprocating
4 Pressure stage 4 stage
5 Capacity 30nm3
6 Inlet pressure 3~4bar
7 Outlet pressure 200bar
8 Cooling way Water / Air
9 Motor power 13.5kw
10 Automatic control parts Overload ,stop automatic
11 External dimension 1650*950*1470mm
12 Weight 960kg

 

Product Configuration

 

 

Service & Support

*We will answer calls and receive consultation documents from customer politely and earnestly, to know exactly about customers’ site situation and technical requirements, and record all data in detail.
*We will carefully analyze the information supplied by customers, to provide catalog and technical proposal in time.
*We will contact customers regularly, actually knowing about the progress, thus can provide reasonable suggestions, to help customers reducing costs.
*We sincerely invite customers to visit our company, participating in technical discussion, to determine the best solution.
*If any trouble occurred during the equipment running period, our technicians will communicate with customers and help solve the problem in time.
*We will send technicians to help customers install, debug the equipment and train workers, until the workers are familiar with the operation, technical principle and simple maintenance of the system.
*All the equipment has 18-month warranty from delivery date.
*During the equipment running period, we will contact customers and ask for feedback regularly.
 

Product Presentation

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Samples:
US$ 9130/Set
1 Set(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How Do You Troubleshoot Common Issues with Gas Air Compressors?

Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:

1. Start with Safety Precautions:

Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.

2. Check Power Supply and Connections:

Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.

3. Check Fuel Supply:

For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.

4. Inspect Air Filters:

Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.

5. Check Oil Level and Quality:

If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.

6. Inspect Spark Plug:

If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.

7. Check Belts and Pulleys:

Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.

8. Listen for Unusual Noises:

During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.

9. Consult the Owner’s Manual:

If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.

10. Seek Professional Assistance:

If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.

Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.

air compressor

What Are the Key Components of a Gas Air Compressor Control Panel?

A gas air compressor control panel typically consists of several key components. Here’s a detailed explanation:

1. Power Switch:

The power switch allows the operator to turn the compressor on or off. It is usually a toggle switch or a push-button switch located on the control panel.

2. Pressure Gauges:

Pressure gauges display the compressed air pressure at different stages of the compression process. Commonly, there are two pressure gauges: one to measure the incoming air pressure (suction pressure) and another to measure the outgoing compressed air pressure (discharge pressure).

3. Control Knobs or Buttons:

Control knobs or buttons are used to adjust and set various parameters of the compressor operation. These controls may include pressure settings, on/off timers, automatic start/stop functions, and other operational parameters specific to the compressor model.

4. Emergency Stop Button:

An emergency stop button is a critical safety feature that immediately shuts down the compressor in case of an emergency. Pressing the emergency stop button cuts off power to the compressor and stops its operation.

5. Motor Start/Stop Buttons:

Motor start and stop buttons allow the operator to manually start or stop the compressor motor. These buttons are used when manual control of the motor is required, such as during maintenance or troubleshooting.

6. Control Indicators:

Control indicators include various lights or LEDs that provide visual feedback about the compressor’s status and operation. These indicators may include power indicators, motor running indicators, pressure indicators, and fault indicators to signal any malfunctions or abnormal conditions.

7. Control Panel Display:

Some gas air compressors feature a control panel display that provides real-time information and feedback on the compressor’s performance. The display may show parameters such as operating pressure, temperature, maintenance alerts, fault codes, and other relevant information.

8. Start/Stop Control Circuit:

The start/stop control circuit is responsible for initiating and controlling the motor start and stop sequences. It typically includes relays, contactors, and other electrical components that enable the control panel to safely start and stop the compressor motor.

9. Safety and Protection Devices:

Gas air compressor control panels may incorporate safety and protection devices to safeguard the compressor and prevent potential damage or hazardous situations. These devices can include overload relays, thermal protection, pressure relief valves, and other safety features.

10. Control Panel Enclosure:

The control panel enclosure houses and protects the electrical components and wiring of the control panel. It provides insulation, protection from dust and moisture, and ensures the safety of the operator.

In summary, a gas air compressor control panel typically includes a power switch, pressure gauges, control knobs or buttons, emergency stop button, motor start/stop buttons, control indicators, control panel display (if applicable), start/stop control circuit, safety and protection devices, and a control panel enclosure. These components work together to monitor and control the compressor’s operation, ensure safety, and provide essential information to the operator.

air compressor

What Are the Primary Applications of Gas Air Compressors?

Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:

1. Construction Industry:

Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.

2. Agriculture and Farming:

Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.

3. Recreational Activities:

Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.

4. Mobile Service Operations:

Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.

5. Remote Job Sites:

Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.

6. Emergency and Backup Power:

In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.

7. Sandblasting and Surface Preparation:

Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.

8. Off-Road and Outdoor Equipment:

Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.

Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.

China high quality Booster Compressor for Oxygen Comprensor High Pressure Oil Free Oxygen Compressor   air compressor for saleChina high quality Booster Compressor for Oxygen Comprensor High Pressure Oil Free Oxygen Compressor   air compressor for sale
editor by CX 2024-05-16

China Best Sales High Pressure Oil Free Medical Oxygen Booster Compressor 200 Bar Gas Compressor air compressor for car

Product Description

 

Product Description

High Pressure Oil Free Medical Oxygen Booster Compressor 200 Bar Gas Compressor

Rocky Machinery Equipment Co., Ltd. mainly produces non-flammable and explosive gas compressors such as oil-free air, oxygen, nitrogen, argon, helium, carbon dioxide, sulfur hexafluoride, and supporting post-processing equipment, cold dryers, filters , Air storage tank, to provide users with oil-free, water-free, dust-free, sterile purified air. The grease-injectable oil-free compressor changes the structure of the original old-fashioned model, which is easy to maintain and prolongs the service life. The product has passed the ISO9001-2008 system certification and CE certification, providing customers with high-quality oil-free compressor products.

Oil-free medium and high pressure series air compressors are air-cooled or water-cooled. This series of units is equipped with automatic stop/start control for the compressor. The working pressure and pressure difference can be adjusted, and it is also used for emergency shutdown.

Each machine is designed and produced according to customer requirements, and its control is simple and its operation is reliable, so it is your ideal choice. The high-pressure gas compressor currently produced by our company can reach 350 kg. The main engine adopts a fully enclosed structure, which has no pollution to the compressed medium, no leakage, reliable compressor performance, simple operation, and is favored by customers because of its compact structure and fast connection.

Technical parameter

Model No. Flow rate
    (N m³/h)
Inlet
pressure
(Mpa)
Exhaust
pressure
(Mpa)
Power
(kw)
Cylinder bore Inlet connection
size
Outlet
connection
sizes
Overall dimension
(mm)
Weight
(kg)
Speed
(r/min)
RKWWY-5/4-150 5 0.4 15 4 Ø50+Ø30+Ø20 Rc 1/2 G5/8 1350X1000X1100 400 470
RKWWY-10/4-150 10 0.4 15 5.5 Ø65+Ø36+Ø20 Rc 1/2 G5/8 1350X1000X1100 410 470
RKWWY-15/4-150 15 0.4 15 7.5 Ø65+Ø36+Ø20 Rc 1/2 G5/8 1350X1000X1100 420 640
RKWWY-20/4-150 20 0.4 15 1 1 Ø70+Ø36+Ø20 Rc 1/2 G5/8 1350X1000X1100 430 580
RKWWY-25/4-150 25 0.4 15 1 1 Ø70+Ø36+Ø20 Rc 1/2 G5/8 1350X1000X1100 430 640
RKWWY-30/4-150 30 0.4 15 15 Ø90+Ø50+Ø30 Rc 1/2 G5/8 1350X1000X1100 450 470
RKWWY-35/4-150 35 0.4 15 15 Ø90+Ø50+Ø30 Rc 1/2 G5/8 1350X1000X1100 450 500
RKWWY-40/4-150 40 0.4 15 15 Ø90+Ø50+Ø30 Rc 1/2 G5/8 1350X1000X1100 450 580
RKSWY-45/4-150 45 0.4 15 18.5 2-Ø70+ Ø50+Ø30 Rc 1/2 G5/8 1450X1100X1250 520 580
RKSWY-50/4-150 50 0.4 15 18.5 2-Ø70+ Ø50+Ø30 Rc 1/2 G5/8 1450X1100X1250 520 580
RKSWY-55/4-150 55 0.4 15 18.5 2-Ø70+ Ø50+Ø30 Rc 1 G5/8 1450X1100X1250 520 640
RKSWY-60/4-150 60 0.4 15 22 2-Ø70+ Ø50+Ø30 Rc 1 G5/8 1450X1100X1250 540 720
RKSWY-65/4- 150 65 0.4 15 22 2- Φ70+ Φ50+ Φ30 Rc 1 G5/8 1450*1100*1250 540 720
RKSWY-70/4- 150 70 0.4 15 22 2- Φ70+ Φ50+ Φ30 Rc 1 G5/8 1450*1100*1250 540 720
RKWWY-75/4- 150- II  75 0.4 15 15*2 (Φ90+ Φ50+ Φ30)*2 Rc 1 G5/8 2800*1250*1200 1060 580
RKWWY-80/4- 150-II    80 0.4 15 15*2 (Φ90+ Φ50+ Φ30)*2 Rc 1 G5/8 2800*1250*1200 1060 580
RKWWY-85/4- 150-II  85 0.4 15 15*2 (Φ90+ Φ50+ Φ30)*2 Rc 1 G5/8 2800*1250*1200 1060 580
RKSWY-90/4- 150-II    90 0.4 15 18.5*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1260 580
RKSWY-95/4- 150-II    95 0.4 15 18.5*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1260 580
RKSWY- 100/4- 150-II    100 0.4 15 18.5*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1260 580
RKSWY- 105/4- 150-II    105 0.4 15 18.5*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1260 580
RKSWY- 1 10/4- 150-II    1 10 0.4 15 18.5*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1260 580
RKSWY- 1 15/4- 150-II    1 15 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 640
RKSWY- 120/4- 150-II    120 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 640
RKSWY- 125/4- 150-II    125 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 640
RKSWY- 130/4- 150-II    130 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 720
RKSWY- 135/4- 150-II    135 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 720
RKSWY- 140/4- 150-II    140 0.4 15 22*2 (2- Φ70+ Φ50+ Φ30)*2 Rc 1 G5/8 2900*1320*1300 1350 720

The basic parameters listed in this table can be confirmed according to the actual working conditions
1. Touch screen PLC control Touch
2. Remote control is optional
3. Inlet and outlet pressure overload, temperature overheating, cooling water failure, circular rolling prompt alarm and stop
4. Running time display, maintenance cycle reminder
5. With its own water tank and circulation pump, no external pipeline is required, and it can be filled with antifreeze at low temperature without hindrance

Application industry

High-pressure oil-free gas booster is a follow-up equipment used in the field of gas separation, widely used in gas supply systems in chemical industry, food and beverage, electronic instruments, transportation and telecommunications, textiles, scientific research and other departments (such as: pressure detection, pressure test , Plastic blowing, bottle filling, diesel engine starting, hyperbaric oxygen chamber, pipeline cleaning, etc.). Can provide oil-free, pure and pollution-free high-quality compressed air.

Successful cases

Customer Visit

Packaging & Shipping

 • Packing Details: Plywood crate pallet plus foam board and bubble film, Full closed wooden case. 1pcs/each package (for stationary screw air compressor)

• Shipping method: by sea, by LCL/FCL or as requested
• Delivery method: FOB, CFR, CIF and EXW etc.
• Delivery time: in 7-15 days after receiving deposit (customized machines not included)

Company Profile

ZheJiang CHINAMFG Machinery Co., Ltd. is a company dedicated to the production and research and development of various gas compression equipment. The company was established in 2012 and has a total of 5 licensed technical engineers. Mainly engaged in air, nitrogen, CO2 and other special gas compression equipment and after-treat equipment. With the development in recent years, the company has established a foreign trade team in ZheJiang , and hired foreign trade consultants with 10 years of industry experience to better serve customers worldwide. With excellent quality and the support of 30 distributors worldwide, our annual sales in 2018 exceeded 5 million US dollars. We look CHINAMFG to working with you to create a better tomorrow!

 

After Sales Service

1. 24/7 after sales service support in different languages.
2. Customized color, Model ect.
3. Guidance of installation and commissioning on site can be provided by factory-trained technicians or local Authorized Service Center.
4. Delivery on time and excellent after-sales service.
5. Plenty of original spare parts with proven quality.
6. All kinds of technical documents in different languages.

Payment and delivery

FAQ

Q1. Are you trading company or manufacture ?

A: We are professional manufacture of screw air compressor of HangZhou,ZheJiang ,China. More than 18 years of experience in air compressor manufacturing.

Q2. How long is the delivery time ?
A: For standard voltage ,15 working days. Non-standard ,please contact our sales.

 

Q3. What’s payment term ?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, and etc. Also we could accept USD, RMB, Euro and other currency.

 

Q4. How about your after-sales service ?
A: 1.Provide customers with installation and commissioning online instructions.
     2. Well-trained engineers available to overseas service.
     3.CHINAMFG agents and after service avaiable.arrange our engineers to help you training and installation.

 

Q5. How about your warranty?
A: One year for the whole machine and 2 years for screw air end, except consumable spare parts.

 

Q6. Do you have any certificate ?
A: Yes, per different customer’s market need ,we can offer CE ,ISO etc certificate.

 

Q7. What about the maintenance ?
A: First maintenance need to be done after 500Hours, and then every 2000-3000 hours to do the normal maintenance, and consider the actual environment.

 

Q8. How do you control quality ?
A: 1. The raw materials are strictly inspected
     2. Some key parts are imported from overseas
     3. Each compressor must pass at least 5 hours of continuous testing before leaving the factory.

 

Q9. Do you offer OEM service ?
A: Yes.Both OEM & ODM service can be accepted.

 

Q10.How long could your air compressor be used?
A: Generally, more than 10 years.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 24 Months
Lubrication Style: Oil-free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

Can Gas Air Compressors Be Used in Construction Projects?

Gas air compressors are widely used in construction projects due to their portability, versatility, and ability to provide the necessary compressed air for various applications. They are an essential tool in the construction industry, enabling the efficient and effective operation of pneumatic tools and equipment. Here’s a detailed explanation of how gas air compressors are used in construction projects:

1. Powering Pneumatic Tools:

Gas air compressors are commonly used to power a wide range of pneumatic tools on construction sites. These tools include jackhammers, nail guns, impact wrenches, concrete breakers, air drills, sanders, grinders, and paint sprayers. The compressed air generated by the gas air compressor provides the necessary force and power for efficient operation of these tools, enabling tasks such as concrete demolition, fastening, surface preparation, and finishing.

2. Air Blow and Cleaning Operations:

In construction projects, there is often a need to clean debris, dust, and dirt from work areas, equipment, and surfaces. Gas air compressors are used to generate high-pressure air for air blow and cleaning operations. This helps maintain cleanliness, remove loose materials, and prepare surfaces for further work, such as painting or coating.

3. Operating Pneumatic Systems:

Gas air compressors are employed to operate various pneumatic systems in construction projects. These systems include pneumatic control devices, pneumatic cylinders, and pneumatic actuators. Compressed air from the gas air compressor is used to control the movement of equipment, such as gates, doors, and barriers, as well as to operate pneumatic lifts, hoists, and other lifting mechanisms.

4. Concrete Spraying and Shotcreting:

Gas air compressors are utilized in concrete spraying and shotcreting applications. Compressed air is used to propel the concrete mixture through a nozzle at high velocity, ensuring proper adhesion and distribution on surfaces. This technique is commonly employed in applications such as tunnel construction, slope stabilization, and repair of concrete structures.

5. Sandblasting and Surface Preparation:

In construction projects that require surface preparation, such as removing old paint, rust, or coatings, gas air compressors are often used in conjunction with sandblasting equipment. Compressed air powers the sandblasting process, propelling abrasive materials such as sand or grit onto the surface to achieve effective cleaning and preparation before applying new coatings or finishes.

6. Tire Inflation and Equipment Maintenance:

Gas air compressors are utilized for tire inflation and equipment maintenance on construction sites. They provide compressed air for inflating and maintaining proper tire pressure in construction vehicles and equipment. Additionally, gas air compressors are used for general equipment maintenance, such as cleaning, lubrication, and powering pneumatic tools for repair and maintenance tasks.

7. Portable and Remote Operations:

Gas air compressors are particularly beneficial in construction projects where electricity may not be readily available or feasible. Portable gas air compressors provide the flexibility to operate in remote locations, allowing construction crews to utilize pneumatic tools and equipment without relying on a fixed power source.

Gas air compressors are an integral part of construction projects, facilitating a wide range of tasks and enhancing productivity. Their ability to power pneumatic tools, operate pneumatic systems, and provide compressed air for various applications makes them essential equipment in the construction industry.

air compressor

How Do Gas Air Compressors Contribute to Energy Savings?

Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:

1. Efficient Power Source:

Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.

2. Reduced Electricity Consumption:

Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.

3. Demand-Sensitive Operation:

Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.

4. Energy Recovery:

Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.

5. Proper Sizing and System Design:

Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.

6. Regular Maintenance:

Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.

7. System Optimization:

For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.

In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.

air compressor

How Does a Gas Air Compressor Work?

A gas air compressor works by utilizing a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air can then be used for various applications. Here’s a detailed explanation of how a gas air compressor operates:

1. Gas Engine:

A gas air compressor is equipped with a gas engine as its power source. The gas engine is typically fueled by gasoline, diesel, natural gas, or propane. When the engine is started, the fuel is combusted within the engine’s cylinders, generating mechanical energy in the form of rotational motion.

2. Compressor Pump:

The gas engine drives the compressor pump through a mechanical linkage, such as a belt or direct coupling. The compressor pump is responsible for drawing in atmospheric air and compressing it to a higher pressure. There are different types of compressor pumps used in gas air compressors, including reciprocating, rotary screw, or centrifugal, each with its own operating principles.

3. Intake Stroke:

In a reciprocating compressor pump, the intake stroke begins when the piston moves downward within the cylinder. This creates a vacuum, causing the inlet valve to open and atmospheric air to be drawn into the cylinder. In rotary screw or centrifugal compressors, air is continuously drawn in through the intake port as the compressor operates.

4. Compression Stroke:

During the compression stroke in a reciprocating compressor, the piston moves upward, reducing the volume within the cylinder. This compression action causes the air to be compressed and its pressure to increase. In rotary screw compressors, two interlocking screws rotate, trapping and compressing the air between them. In centrifugal compressors, air is accelerated and compressed by high-speed rotating impellers.

5. Discharge Stroke:

Once the air is compressed, the discharge stroke begins in reciprocating compressors. The piston moves upward, further reducing the volume and forcing the compressed air out of the cylinder through the discharge valve. In rotary screw compressors, the compressed air is discharged through an outlet port as the interlocking screws continue to rotate. In centrifugal compressors, the high-pressure air is discharged from the impeller into the surrounding volute casing.

6. Pressure Regulation:

Gas air compressors often include pressure regulation mechanisms to control the output pressure of the compressed air. This can be achieved through pressure switches, regulators, or control systems that adjust the compressor’s operation based on the desired pressure setting. These mechanisms help maintain a consistent and controlled supply of compressed air for the specific application requirements.

7. Storage and Application:

The compressed air produced by the gas air compressor is typically stored in a receiver tank or used directly for applications. The receiver tank helps stabilize the pressure and provides a reservoir of compressed air for immediate use. From the receiver tank, the compressed air can be distributed through pipelines to pneumatic tools, machinery, or other devices that require the compressed air for operation.

Overall, a gas air compressor operates by using a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air is then regulated and used for various applications, providing a reliable source of power for pneumatic tools, machinery, and other equipment.

China Best Sales High Pressure Oil Free Medical Oxygen Booster Compressor 200 Bar Gas Compressor   air compressor for carChina Best Sales High Pressure Oil Free Medical Oxygen Booster Compressor 200 Bar Gas Compressor   air compressor for car
editor by CX 2024-05-14

China supplier Oil Free High Pressure H2 Hydrogen Compressor Booster Oil Free air compressor repair near me

Product Description

Oil Free High Pressure H2 hydrogen compressor booster oil free 

  

Introduction

Small vibration, low noise, long service life of consumableparts, continuousoperation; pureofthecompressed gas , no secondary pollution, used for pharmaceutical, chemical, food, scientific research,  and other fields of process gas compressor,also can be used for air separation industry of gas pressurizing cases.
Hydrogen compressor is an important equipment used in the field of purification after gas separation,recovery of gas source etc.  Cape-Golden brand oilless hydrogen compressor carefully developed and produced by our plant has the prominent features of reliability,no pollution,no leakage etc.,and is widely used in sectors as of chemical engi-neering,foodstuff,medicine etc.

 

 

 

Main Technical Parameters

Main Parameter
1. Intake Pressure:0-3.0MPa
2.Exhaust Pressure:≤30MPa
3.Motor Power:45-110KW
4.Compressor Speed:300-580r/min
5.Compression series:1-4
6.Throughput:500-3000Nm³/h
7.Cooling Way : Air or Water 
 

 

 

Oxygen Compressor Protection

 

1. The operator must hold the corresponding electrician operation certificate, and work under the guidance of electrical technicians. Power supply must be cut off before electrical maintenance, and special person monitoring and warning signs should be set up. 
2. During the operation of the High Pressure Gas Compressor, do not touch the moving parts such as the transmission belt and fan wheel, and do not touch the cylinder wall, air pipe, and water pipe to avoid scalding.

 

Presentation

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: New Energy
Noise Level: Low
Machine Size: Medium
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used for Well Drilling?

Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:

1. Air Drilling Method:

Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.

2. Benefits of Gas Air Compressors:

Gas air compressors offer several advantages for well drilling:

  • Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
  • Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
  • Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
  • Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.

3. Compressor Selection:

When selecting a gas air compressor for well drilling, several factors should be considered:

  • Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
  • Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
  • Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.

4. Safety Considerations:

It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.

5. Other Considerations:

While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.

In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.

air compressor

Can Gas Air Compressors Be Used for Pneumatic Tools?

Yes, gas air compressors can be used for pneumatic tools. Here’s a detailed explanation:

1. Versatile Power Source:

Gas air compressors, powered by gasoline or diesel engines, provide a portable and versatile power source for operating pneumatic tools. They eliminate the need for electrical power supply, making them suitable for remote locations or construction sites where electricity may not be readily available.

2. High Power Output:

Gas air compressors typically offer higher power output compared to electric compressors of similar size. This high power output enables gas compressors to deliver the necessary air pressure and volume required by pneumatic tools, ensuring optimal tool performance.

3. Mobility and Portability:

Gas air compressors are often designed with mobility and portability in mind. They are compact and equipped with wheels or handles, allowing for easy transportation to different job sites. This mobility is advantageous when using pneumatic tools in various locations or when working in confined spaces.

4. Continuous Operation:

Gas air compressors can provide continuous air supply for pneumatic tools without the need for frequent pauses or recharging. As long as there is an adequate fuel supply, gas compressors can operate for extended periods, allowing uninterrupted use of pneumatic tools for tasks such as drilling, nailing, sanding, or painting.

5. Suitable for High-Demand Applications:

Pneumatic tools used in heavy-duty applications often require a robust air supply to meet their performance requirements. Gas air compressors can generate higher air flow rates and maintain higher operating pressures, making them suitable for high-demand pneumatic tools like jackhammers, impact wrenches, or sandblasters.

6. Flexibility in Compressor Size:

Gas air compressors are available in various sizes and capacities, allowing users to choose the compressor that best matches the air demands of their pneumatic tools. From small portable compressors for light-duty tasks to larger industrial-grade compressors for heavy-duty applications, there is a wide range of options to suit different tool requirements.

7. Reduced Dependency on Electrical Infrastructure:

Using gas air compressors for pneumatic tools reduces reliance on electrical infrastructure. In situations where the electrical power supply is limited, unreliable, or expensive, gas compressors offer a viable alternative, ensuring consistent tool performance without concerns about power availability.

It’s important to note that gas air compressors emit exhaust gases during operation, so proper ventilation is necessary when using them in enclosed spaces to ensure the safety of workers.

In summary, gas air compressors can effectively power pneumatic tools, offering mobility, high power output, continuous operation, and suitability for various applications. They provide a reliable and portable solution for utilizing pneumatic tools in locations where electrical power supply may be limited or unavailable.

air compressor

What Safety Precautions Should Be Taken When Operating Gas Air Compressors?

Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:

1. Read and Follow the Manufacturer’s Instructions:

Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.

2. Provide Adequate Ventilation:

Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.

3. Wear Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.

4. Perform Regular Maintenance:

Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.

5. Preventive Measures for Fuel Handling:

If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:

  • Store fuel in approved containers and in well-ventilated areas away from ignition sources.
  • Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
  • Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
  • Never smoke or use open flames near the compressor or fuel storage areas.

6. Use Proper Electrical Connections:

If the gas air compressor requires electrical power, follow these electrical safety precautions:

  • Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
  • Avoid using extension cords unless recommended by the manufacturer.
  • Inspect electrical cords and plugs for damage before use.
  • Do not overload electrical circuits or use improper voltage sources.

7. Secure the Compressor:

Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.

8. Familiarize Yourself with Emergency Procedures:

Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.

It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.

China supplier Oil Free High Pressure H2 Hydrogen Compressor Booster Oil Free   air compressor repair near meChina supplier Oil Free High Pressure H2 Hydrogen Compressor Booster Oil Free   air compressor repair near me
editor by CX 2024-05-09

China Custom Oil Free Small Hydrogen Gas Compressor Manufacturer air compressor for sale

Product Description

                         Reciprocating Micro-Oil Oil-free Piston Compressor

                                      ( Blue Font To View Hyperlink)

Our company specialize in making various kinds of compressors, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.

This series of oil-free compressor is one of the first products produced by our factory in China. The product has the characteristics of low speed, high component strength, stable operation, long service life and convenient maintenance. This series compressor is in the form of unit. It integrates compressor, gas-liquid separator, filter, 2 position four-way valve, safety valve, check valve, explosion-proof motor and chassis. The utility model has the advantages of small volume, light weight, low noise, good sealing performance, easy installation, simple operation, etc.

Main components
1.  Motion system: crankshaft, piston connecting rod assembly, coupling, etc.
2.  Air distribution system: valve plate, valve spring, etc.
3. Sealing system: piston ring, oil seal, gasket, packing, etc.

4. Body system: crankcase, cylinder block, cylinder liner, cover plate, etc.
5. Lubrication system: lubricating oil pump, oil filter, pressure regulating valve, etc.;
6Safety and energy regulation systems: safety valves, energy regulation devices, etc.

Working principle of piston compressor
When the crankshaft of the piston compressor rotates, the piston will reciprocate through the transmission of the connecting rod, and the working volume formed by the inner wall of the cylinder, the cylinder head and the top surface of the piston will periodically change. When the piston of a piston compressor starts to move from the cylinder head, the working volume in the cylinder gradually increases. At this time, the gas flows along the intake pipe and pushes the intake valve to enter the cylinder until the working volume reaches the maximum. , The intake valve is closed; when the piston of the piston compressor moves in the reverse direction, the working volume in the cylinder is reduced, and the gas pressure is increased. When the pressure in the cylinder reaches and is slightly higher than the exhaust pressure, the exhaust valve opens and the gas is discharged from the cylinder , Until the piston moves to the limit position, the exhaust valve is closed. When the piston of the piston compressor moves in the reverse direction again, the above process repeats. In short, the crankshaft of a piston compressor rotates once, the piston reciprocates once, and the process of air intake, compression, and exhaust is realized in the cylinder, which completes a work cycle.

Advantages of piston compressor
1. The applicable pressure range of the piston compressor is wide, and the required pressure can be reached regardless of the flow rate;
2. The piston compressor has high thermal efficiency and low unit power consumption;
3. Strong adaptability, that is, a wide exhaust range, and is not affected by the pressure level, and can adapt to a wider pressure range and cooling capacity requirements;
4. Piston compressors have low requirements for materials, and use common steel materials, which is easier to process and lower in cost;
5. The piston compressor is relatively mature in technology, and has accumulated rich experience in production and use;
6. The device system of the piston compressor is relatively simple.

Note: In the unloading process, the compressor pressurizes the gas from the storage tank and then presses it into the tank car through the gas-phase pipeline, and presses the liquid from the tank car to the storage tank through the gas-phase differential pressure to complete the unloading process. When the gas phase is pressurized, the temperature of the gas phase will rise. At this time, forced cooling is not necessary, because if the gas phase is compressed and then cooled, it is easy to liquefy, and it is difficult to establish the pressure difference of the gas phase, which is not conducive to the replacement of the gas phase and the liquid phase. In short, it will cause the prolongation of the unloading process. If it is necessary to recover the residual gas, the cooler can be selected to forcibly cool the gas phase during the recovery operation, so as to recover the residual gas as soon as possible.The loading process is opposite to the unloading process.

Chemical Process Compressor Description 
Chemical process compressors refer to process reciprocating piston compressors used to compress various single or mixed media gases in petroleum and chemical processes, as well as chemical exhaust gas recycling systems. Its main function is to transport the medium gas in the reaction device and provide the required pressure to the reaction device. Features 1. Designed for specific process flow. 2. The whole machine is skid-mounted and advanced in structure. 3. The compressor types are: Z type, D type, M type. 4. The middle body of the slideway and the cylinder can be designed in different structural forms according to the process requirements.

Reference Technical parameters and specifications

  Model Volume flow(Nm3/h) Suction pressure(Mpa) Exhaust pressure (Mpa) Motor power(kw) Dimension (mm)
1 ZW-0.4/ 2-250 60 0.2 25 18.5 2800*2200*1600
2 ZW-0.81/ (1~3)-25 120 0.1~0.3 2.5 22 1000*580*870
3 DW-5.8/0.5-5 400~500 0.05 0.5 37 2000*1600*1200
4 DW-10/2 510 Atmospheric pressure 0.2 37 2000*1600*1200
5 DW-6.0/5 300 Atmospheric pressure 0.5 37 2000*1600*1200
6 DW-0.21/(20~30)-250 270 2~3 25 45 3200*2200*1600
7 ZW-0.16/60-250 480 6 25 45 3000*2200*1600
8 ZW-0.46 /(5~10)-250 200 0.5~1.0 25 45 3000*2200*1600
9 DW-1.34/2-250 208 0.2 25 55 3400*2200*1600
10 DW-0.6/24-85 720 2.4 8.5 55 2200*1600*1200
11 ZW-2.9/14.2-20 220 1.42 2 55 2200*1600*1200
12 VW-2.0/(2~4)-25 410 0.2~0.4 2.5 55 3400*2200*1600
13 DW-0.85/(3~4)-250 180 0.3~0.4 25 55 2400*1800*1500
14 DW-25-(0.2~0.3)-1.5 1620 0.02~0.03 0.15 75 2400*1800*1500
15 VW-8.0/0.3-25 540 0.03 2.5 90 2400*1800*1500
16 DW-6.8/0.05-40 200~400 0.005 4 90 2400*1800*1500

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Horizontal
Structure Type: Closed Type
Compress Level: Double-Stage
Customization:
Available

|

air compressor

What Is the Typical Lifespan of a Gas Air Compressor?

The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:

1. Quality of the Compressor:

The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.

2. Usage Patterns:

The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.

3. Maintenance Practices:

Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.

4. Environmental Conditions:

The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.

5. Proper Installation and Operation:

Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.

Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.

Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.

air compressor

Can Gas Air Compressors Be Used in Agriculture?

Yes, gas air compressors can be used in various agricultural applications. Here’s a detailed explanation:

1. Pneumatic Tools and Equipment:

Gas air compressors can power a wide range of pneumatic tools and equipment used in agriculture. These tools include pneumatic drills, impact wrenches, nail guns, staplers, and pneumatic pumps. Gas air compressors provide the necessary compressed air to operate these tools, making various tasks more efficient and convenient on the farm.

2. Irrigation Systems:

Gas air compressors can be used to power irrigation systems in agriculture. They can supply compressed air to operate pneumatic valves, which control the flow of water in irrigation networks. Gas air compressors ensure reliable and efficient operation of irrigation systems, facilitating the distribution of water to crops in a controlled manner.

3. Grain Handling and Storage:

Air compressors play a vital role in grain handling and storage facilities. They are used to power aeration systems that provide airflow to grains stored in silos or bins. Aeration helps control the temperature and moisture levels, preventing spoilage and maintaining grain quality. Gas air compressors provide the airflow necessary for effective aeration in grain storage operations.

4. Cleaning and Maintenance:

In agriculture, gas air compressors are commonly used for cleaning and maintenance tasks. They can power air blowers or air guns to remove dust, debris, or chaff from machinery, equipment, or storage areas. Gas air compressors provide a high-pressure stream of compressed air, facilitating efficient cleaning and maintenance operations.

5. Livestock Operations:

Gas air compressors find applications in livestock operations as well. They can power pneumatic equipment used for animal care, such as pneumatic nail guns for building or repairing livestock enclosures, pneumatic pumps for water distribution, or pneumatic tools for general maintenance tasks.

6. Portable and Versatile:

Gas air compressors are often portable and can be easily transported around the farm, allowing flexibility in agricultural operations. Their versatility makes them suitable for various tasks, from powering tools and equipment in the field to providing compressed air for maintenance or cleaning in different farm locations.

7. Remote Locations:

In agricultural settings where access to electricity may be limited, gas air compressors offer a reliable alternative. They can be powered by gasoline or diesel engines, providing compressed air even in remote areas without electrical infrastructure.

8. Considerations:

When using gas air compressors in agriculture, it is essential to consider factors such as compressor size, capacity, and maintenance requirements. Selecting the right compressor based on the specific needs of the agricultural applications ensures optimal performance and efficiency.

In summary, gas air compressors have various applications in agriculture. They can power pneumatic tools and equipment, operate irrigation systems, facilitate grain handling and storage, assist in cleaning and maintenance tasks, support livestock operations, and offer portability and versatility. Gas air compressors contribute to increased efficiency, convenience, and productivity in agricultural operations.

air compressor

What Are the Primary Applications of Gas Air Compressors?

Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:

1. Construction Industry:

Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.

2. Agriculture and Farming:

Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.

3. Recreational Activities:

Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.

4. Mobile Service Operations:

Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.

5. Remote Job Sites:

Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.

6. Emergency and Backup Power:

In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.

7. Sandblasting and Surface Preparation:

Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.

8. Off-Road and Outdoor Equipment:

Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.

Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.

China Custom Oil Free Small Hydrogen Gas Compressor Manufacturer   air compressor for saleChina Custom Oil Free Small Hydrogen Gas Compressor Manufacturer   air compressor for sale
editor by CX 2024-04-27

China manufacturer 1/4 NPT Industrial Good Price and Good Quality Low Noise Oil Lubrication Rotary Air CHINAMFG with Germany Air End for Road Construction air compressor for sale

Product Description

Product Description

ZIQI CHINAMFG Screw Air Compressor Advantages:

A.80% components of CHINAMFG Compressor adopt global well known reliable brand to make sure the air compressor with high quality,durable,energy saving:
1.Core part:Germany GHH RAND screw air end ;
2.Motor:adopt Brazil WEG brand,the second biggest motor manufacturer in the world,IE4 energy saving standard 3 phase induction motor,IP55 protection;
3.Italian EURE oil air vessel ,the lead pressure vessel manufacturer in the world;
4.Italian Manuli oil tube ;
5.French Schneider electric system;
6.Sweden CHINAMFG bearings

Energy saving:
The air compressor equiped the frequency inverter,to make the air compressor with variable speed drive [VSD]. The principle of VSD is to adjust the motor rotation speed automatically according to the actual air consumption. The reduced system pressure decreases the total energy consumption of the whole system, which can  reduce energy costs by 35% or more .

Technical Parameter

Model Air pressure Max air displacement  Motor power transmission dimension Weight Noise Outlet
cooling type
mpa bar(e)  psi(g)  m3/min  cfm  hp  kw  belt drive 
&
air cooling
L(mm) W(mm) H(mm) Kgs dB(A) mm
GA-3.7A 0.7 7 102 0.55 19 5 3.7  680  660  780  220 60±2  20
0.8 8 116 0.45 16
1 10 145 0.35 12
GA-5.5A 0.7 7 102 0.8 28 7 5.5 680 660 780 230 61±2 20
0.8 8 116 0.7 25
1 10 145 0.6 21
1.3 13 189 0.5 18
GAS-7.5A VFC 0.7 7 102 1.3 46 10 7.5 950 650 915 270 62±2 20
0.8 8 116 1.2 42
1 10 145 1.1 39
1.3 13 189 0.9 32
GAS-11A VFC 0.7 7 102 1.8 64 15 11 950 650 915 280 63±2 20
0.8 8 116 1.7 60
1 10 145 1.5 53
1.3 13 189 1.2 42
GAS-15A VFC 0.7 7 102 2.7 95 20 15 1260 850 1220 540 66±2 25
0.8 8 116 2.5 88
1 10 145 2.3 81
1.3 13 189 2 71
GAS-18.5A VFC 0.7 7 102 3.2 113 25 18.5 1260 850 1220 550 67±2 25
0.8 8 116 3 106
1 10 145 2.8 99
1.3 13 189 2.4 85
GAS-22A VFC 0.7 7 102 3.8 134 30 22 1260 850 1220 560 67±2 25
0.8 8 116 3.6 127
1 10 145 3.2 113
1.3 13 189 2.8 99
GAS-30A VFC 0.7 7 102 5.7 201 40 30 1500 970 1375 780 67±2 40
0.8 8 116 5.5 194
1 10 145 5 177
1.3 13 189 4.5 159
GAS-37A VFC 0.7 7 102 6.8 240 50 37 1500 970 1375 800 68±2 40
0.8 8 116 6.31 222
1 10 145 5.7 201
1.3 13 189 5 177
GAS-45A VFC 0.7 7 102 7.9 279 60 45 1500 970 1375 820 69±2 40
0.8 8 116 7.4 261
1 10 145 6.9 244
1.3 13 189 6.1 215
GAS-55A VFC 0.7 7 102 10.9 385 75 55 direct drive &air cooling or water cooling 2150 1326 1766 1550 69±2 50
0.8 8 116 10.4 367
1 10 145 9.4 332
1.3 13 189 8.6 304
GAS-75A VFC 0.7 7 102 14.5 512 100 75 2150 1326 1766 1600 70±2 50
0.8 8 116 13.8 487
1 10 145 12.6 445
1.3 13 189 11.2 395
GAS-90A VFC 0.7 7 102 17 600 120 90 2545 1450 1900 2500 75±2 65
0.8 8 116 16.5 583
1 10 145 15.2 537
1.3 13 189 14 494

*For other requirements,please contact the salesman.

Company Information

Packaging & Shipping

FAQ

 

Are you manufacturer?
ZIQI: Yes,we are professional air compressor manufacturer over 10 years and our factory located in ZheJiang .
How long is your air compressor warranty?
ZIQI: For 1 year.
Do you provide After- sales service parts?
ZIQI: Of course, We could provide easy- consumable spares.
How long could your air compressor be used?
ZIQI: Generally, more than 10 years.
How about your price?
ZIQI: Based on high quality, Our price is very competitive in this market all over the world.
How about your customer service?
ZIQI: For email, we could reply our customers’ emails within 2 hours.
Do you support OEM?
ZIQI: YES, and we also provide multiple models to select.

How to get quicker quotation?

When you send us inquiry, please confirm below information at the same time:
* What is the air displacement (m3/min,cfm/min)?
* What is the air pressure (mpa,bar,psi)?
* What is the voltage in your factory (v/p/Hz)?
* It is ok if you need air tank, air dryer and filters.
This information is helpful for us to check suitable equipment solution and quotation quickly.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 2 Years
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

How Do Gas Air Compressors Compare to Diesel Air Compressors?

When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:

1. Fuel Efficiency:

Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.

2. Power Output:

Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.

3. Cost:

In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.

4. Maintenance Requirements:

Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.

5. Environmental Impact:

When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.

6. Portability and Mobility:

Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.

It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.

In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.

air compressor

What Are the Key Components of a Gas Air Compressor Control Panel?

A gas air compressor control panel typically consists of several key components. Here’s a detailed explanation:

1. Power Switch:

The power switch allows the operator to turn the compressor on or off. It is usually a toggle switch or a push-button switch located on the control panel.

2. Pressure Gauges:

Pressure gauges display the compressed air pressure at different stages of the compression process. Commonly, there are two pressure gauges: one to measure the incoming air pressure (suction pressure) and another to measure the outgoing compressed air pressure (discharge pressure).

3. Control Knobs or Buttons:

Control knobs or buttons are used to adjust and set various parameters of the compressor operation. These controls may include pressure settings, on/off timers, automatic start/stop functions, and other operational parameters specific to the compressor model.

4. Emergency Stop Button:

An emergency stop button is a critical safety feature that immediately shuts down the compressor in case of an emergency. Pressing the emergency stop button cuts off power to the compressor and stops its operation.

5. Motor Start/Stop Buttons:

Motor start and stop buttons allow the operator to manually start or stop the compressor motor. These buttons are used when manual control of the motor is required, such as during maintenance or troubleshooting.

6. Control Indicators:

Control indicators include various lights or LEDs that provide visual feedback about the compressor’s status and operation. These indicators may include power indicators, motor running indicators, pressure indicators, and fault indicators to signal any malfunctions or abnormal conditions.

7. Control Panel Display:

Some gas air compressors feature a control panel display that provides real-time information and feedback on the compressor’s performance. The display may show parameters such as operating pressure, temperature, maintenance alerts, fault codes, and other relevant information.

8. Start/Stop Control Circuit:

The start/stop control circuit is responsible for initiating and controlling the motor start and stop sequences. It typically includes relays, contactors, and other electrical components that enable the control panel to safely start and stop the compressor motor.

9. Safety and Protection Devices:

Gas air compressor control panels may incorporate safety and protection devices to safeguard the compressor and prevent potential damage or hazardous situations. These devices can include overload relays, thermal protection, pressure relief valves, and other safety features.

10. Control Panel Enclosure:

The control panel enclosure houses and protects the electrical components and wiring of the control panel. It provides insulation, protection from dust and moisture, and ensures the safety of the operator.

In summary, a gas air compressor control panel typically includes a power switch, pressure gauges, control knobs or buttons, emergency stop button, motor start/stop buttons, control indicators, control panel display (if applicable), start/stop control circuit, safety and protection devices, and a control panel enclosure. These components work together to monitor and control the compressor’s operation, ensure safety, and provide essential information to the operator.

air compressor

What Safety Precautions Should Be Taken When Operating Gas Air Compressors?

Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:

1. Read and Follow the Manufacturer’s Instructions:

Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.

2. Provide Adequate Ventilation:

Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.

3. Wear Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.

4. Perform Regular Maintenance:

Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.

5. Preventive Measures for Fuel Handling:

If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:

  • Store fuel in approved containers and in well-ventilated areas away from ignition sources.
  • Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
  • Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
  • Never smoke or use open flames near the compressor or fuel storage areas.

6. Use Proper Electrical Connections:

If the gas air compressor requires electrical power, follow these electrical safety precautions:

  • Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
  • Avoid using extension cords unless recommended by the manufacturer.
  • Inspect electrical cords and plugs for damage before use.
  • Do not overload electrical circuits or use improper voltage sources.

7. Secure the Compressor:

Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.

8. Familiarize Yourself with Emergency Procedures:

Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.

It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.

China manufacturer 1/4 NPT Industrial Good Price and Good Quality Low Noise Oil Lubrication Rotary Air CHINAMFG with Germany Air End for Road Construction   air compressor for saleChina manufacturer 1/4 NPT Industrial Good Price and Good Quality Low Noise Oil Lubrication Rotary Air CHINAMFG with Germany Air End for Road Construction   air compressor for sale
editor by CX 2024-03-29

China Hot selling 16.5kw Oil-Free Air Compressor with Stainless Steel Gas Storage Tank and Cold Drying Machine air compressor oil

Product Description

specifications HK-Z16/10-YT
Exhaust volume m ³/ min 1.6
Power(KW) 16.5
pressure
(Mpa)
1.0
External dimensions 1350*1350*1700
host
(Pcs)
3*06
noise
dB
65±2
weight
(KG)
760
outlet size 1″
notes box-type

More recommended products,click on the image to view

 

     HangZhou CHINAMFG Oil Free Compressor Co., Ltd. was established in 2016. The factory is located in the famous oil free compressor production base in China (HangZhou), providing safe and reliable medical grade 0 oil free vortex air compressors to meet various application industries, including medical gas, pharmaceuticals, food and beverage, cosmetics, electronic industry, chemical industry, laboratory, biological fermentation,  environmental protection, and other general industries. 

Why choose CHINAMFG air compressor
1. Products have past the German TUV classo, IP67, EMC and salt spray test certification.
2. Oil free, to avoid oil leakage problem completely and oil in the compressed ai.
3.Avoid regularly clean oil discharge and waste oil processing of environmental protection, to achieve zero emissions.
4.Continuous scroll, high efficiency , low energy consumption.
5.Easy maintenance, less time consuming, it only takes 2 hours each year for preventive maintenance.
6.Failure rate is low, without oil emulsification phenomenon, maintenance is convenient and simple.
7.Dynamic and static scroll does not contact during working, low vibration, low noise.
8.Scroll air end has simple structure, less parts, less wearing parts, greatly reduces the possibility replacing parts, with high durability.Robust structure design high quality air supply capa bitity can improve reliability
Machine Parts

Serial Number specifications Exhaust volume m ³/ min Power(KW) pressure
(Mpa)
External dimensions host
(Pcs)
noise
dB
weight
(KG)
outlet size
 
notes
 
1 HK-D04/08-S1 0.4 3.7 08./1.0 730*610*880 1*04 55±2 200 3/4ball valve box-type
 
2 HK-D04/08-J3 0.4 3.7 08./1.0 1300*840*1480 1*04 55±2 300 3/4ball valve External integrated

200L

3 HK-D04/08-S2 0.4 3.7 08./1.0 1000*700*1500 1*4 55±2 350 3/4ball valve Built in integrated

50L

4 HK-D06/08-S1 0.6 5.5 08./1.0 730*610*880 1*06 58±2 210 3/4ball valve box-type
5 HK-D06/08-J3 0.6 5.5 08./1.0 1300*840*1480 1*06 58±2 310 3/4ball valve External integrated

200L

6 HK-D06/08-S2 0.6 5.5 08./1.0 1000*700*1500 1*06 58±2 360 3/4ball valve Built in integrated

50L

7 HK-Q08/08-S1 0.8 7.5 08./1.0 1170*700*1080 2*04 60±2 380 1″ box-type
8 HK-Q08/08-J7 0.8 7.5 08./1.0 1755*840*1640 2*04 60±2 480 1″ External integrated

200L

9 HK-Q08/08-J8 0.8 7.5 08./1.0 1700*800*1700 2*04 60±2 500 1″ Built in integrated

200L

10 HK-Z12/08-S1 1.2 11 08./1.0 1170*700*1080 2*06 62±2 400 1″ box-type
11 HK-Z12/08-J7 1.2 11 08./1.0 1755*840*1640 2*06 62±2 500 1″ External integrated

200L

12 HK-Z12/08-J8 1.2 11 08./1.0 1700*800*1700 2*06 62±2 550 1″ Built in integrated

200L

13 HK-Q16/08-S1 1.6 15 08./1.0 1100x700x1750 4*04 65±2 500 1″ box-type
14 HK-Z18/08-S1 1.8 16.5 08./1.0 1170*700*1550 3*06 65±2 600 1″ box-type
15 HK-Z24/08-S1 2.4 22 08./1.0 1550*1140*1075 4*06 68±2 800 1.5″ box-type
16 HK-Z30/08-S1 3 27.5 08./1.0 1550*1140*1550 5*06 70±2 1080 1.5″ box-type
17 HK-Z36/08-S1 3.6 33 08./1.0 1550*1140*1550 6*06 70±2 1200 1.5″ box-type
18 HK-Z42/08-S1 4.2 38.5 08./1.0 2150*1450*15800 7*06 72±2 1400 2.0″ box-type
19 HK-Z48/08-S1 4.8 44 08./1.0 2150*1450*1580 8*06 72±2 1500 2.0″ box-type
20 HK-Z54/08-S1 5.4 49.5 08./1.0 2150*1450*1580 9*06 72±2 1650 2.0″ box-type

 
FAQ

Q1: Are you factory or trade company?
A1: We are factory.

Q2: What the exactly address of your factory?
A2: Our factory is located in Jiabao Industrial Park, HangZhou City, ZheJiang Province, China

Q3: Warranty terms of your machine?
A3: One year warranty for the machine and technical support according to your needs.

Q4: Will you provide some spare parts of the machines?
A4: Yes, of course.

Q5:Are you support customization
A5:Yes, supported
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24/7 Service Support
Warranty: Unit 1 Year
Installation Type: Stationary Type
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What Is the Fuel Efficiency of Gas Air Compressors?

The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:

1. Engine Design and Size:

The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.

2. Load Capacity and Usage Patterns:

The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.

3. Maintenance and Tuning:

Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.

4. Operating Conditions:

The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.

5. Fuel Type:

The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.

6. Operator Skills and Practices:

The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.

It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.

Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.

air compressor

How Do Gas Air Compressors Contribute to Energy Savings?

Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:

1. Efficient Power Source:

Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.

2. Reduced Electricity Consumption:

Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.

3. Demand-Sensitive Operation:

Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.

4. Energy Recovery:

Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.

5. Proper Sizing and System Design:

Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.

6. Regular Maintenance:

Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.

7. System Optimization:

For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.

In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.

air compressor

How Does a Gas Air Compressor Work?

A gas air compressor works by utilizing a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air can then be used for various applications. Here’s a detailed explanation of how a gas air compressor operates:

1. Gas Engine:

A gas air compressor is equipped with a gas engine as its power source. The gas engine is typically fueled by gasoline, diesel, natural gas, or propane. When the engine is started, the fuel is combusted within the engine’s cylinders, generating mechanical energy in the form of rotational motion.

2. Compressor Pump:

The gas engine drives the compressor pump through a mechanical linkage, such as a belt or direct coupling. The compressor pump is responsible for drawing in atmospheric air and compressing it to a higher pressure. There are different types of compressor pumps used in gas air compressors, including reciprocating, rotary screw, or centrifugal, each with its own operating principles.

3. Intake Stroke:

In a reciprocating compressor pump, the intake stroke begins when the piston moves downward within the cylinder. This creates a vacuum, causing the inlet valve to open and atmospheric air to be drawn into the cylinder. In rotary screw or centrifugal compressors, air is continuously drawn in through the intake port as the compressor operates.

4. Compression Stroke:

During the compression stroke in a reciprocating compressor, the piston moves upward, reducing the volume within the cylinder. This compression action causes the air to be compressed and its pressure to increase. In rotary screw compressors, two interlocking screws rotate, trapping and compressing the air between them. In centrifugal compressors, air is accelerated and compressed by high-speed rotating impellers.

5. Discharge Stroke:

Once the air is compressed, the discharge stroke begins in reciprocating compressors. The piston moves upward, further reducing the volume and forcing the compressed air out of the cylinder through the discharge valve. In rotary screw compressors, the compressed air is discharged through an outlet port as the interlocking screws continue to rotate. In centrifugal compressors, the high-pressure air is discharged from the impeller into the surrounding volute casing.

6. Pressure Regulation:

Gas air compressors often include pressure regulation mechanisms to control the output pressure of the compressed air. This can be achieved through pressure switches, regulators, or control systems that adjust the compressor’s operation based on the desired pressure setting. These mechanisms help maintain a consistent and controlled supply of compressed air for the specific application requirements.

7. Storage and Application:

The compressed air produced by the gas air compressor is typically stored in a receiver tank or used directly for applications. The receiver tank helps stabilize the pressure and provides a reservoir of compressed air for immediate use. From the receiver tank, the compressed air can be distributed through pipelines to pneumatic tools, machinery, or other devices that require the compressed air for operation.

Overall, a gas air compressor operates by using a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air is then regulated and used for various applications, providing a reliable source of power for pneumatic tools, machinery, and other equipment.

China Hot selling 16.5kw Oil-Free Air Compressor with Stainless Steel Gas Storage Tank and Cold Drying Machine   air compressor oilChina Hot selling 16.5kw Oil-Free Air Compressor with Stainless Steel Gas Storage Tank and Cold Drying Machine   air compressor oil
editor by CX 2024-03-27

China Best Sales Oxygen Gas Compressor 4stage High Pressure Cylinder Filling Oxygen Air Compressor Oil Free Reciprocating Compressor air compressor repair near me

Product Description

 

Oxygen Gas Compressor 4stage High Pressure Cylinder Filling Oxygen Air Compressor Oil Free Reciprocating Compressor

 

Product Description

Oxygen Compressors
Oil-free piston oxygen compressor is the preferred choice when contamination-free, leak-tight oxygen compression is required. CHINAMFG oxygen compressor is designed to afford you high quality, high reliability, low maintenance and extended service intervals.

Based CHINAMFG our extensive experience in compressor technology, and our state-of-the-art engineering and manufacturing capabilities, we work with our customers to provide the optimum solution to satisfy their oxygen gas compression needs.

We- Cape CHINAMFG can provide both standard and custom designed oxygen compressors with a comprehensive assortment of options. We furnish a wide range of equipment from basic units to turnkey, skid-mounted and computer controlled systems.

Our oxygen compressors range in size from 3 hp to 200 hp (3 to 150 Kw), discharge pressures vary from 50 psig to 3000 psig (3 barg to 300 barg).
 

 

Detailed Photos

Product Parameters

150bar/2200PSI Four Stage Compression Oxygen Compressor
Model Flow rate Inlet
Pressure
Discharge
pressure
Power Rate Weight Dimension
(mm)
Noise
GOW-3/4-150 1~3m³/h 3~4bar 150bar 1.5~3KW 140kg 850*640*680 ≤80db
GOW-5/4-150 5m³/h 3~4bar 150bar 3kw 320kg 1000*800*1100 ≤80db
GOW-6/4-150 5m³/h 3~4bar 150bar 3kw 320kg 1000*800*1100 ≤80db
GOW-10/4-150 10m³/h 3~4bar 150bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-12/4-150 12m³/h 3~4bar 150bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-15/4-150 15m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-20/4-150 20m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-30/4-150 30m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-40/4-150 40m³/h 3~4bar 150bar 11KW 960kg 1650*950*1470 ≤80db
GOW-45/4-150 45m³/h 3~4bar 150bar 15KW 960kg 1650*950*1470 ≤80db
GOW-50/4-150 50m³/h 3~4bar 150bar 15KW 960kg 1650*950*1470 ≤80db
GOW-60/4-150 60m³/h 3~4bar 150bar 18.5KW 960kg 1650*950*1470 ≤80db
GOW-70~150/4-150 70~150m³/h 3~4bar 150bar 30~45KW 2000kg 2100*1100*1600 ≤80db
200bar/3000PSI Four Stage Compression Oxygen Compressor
GOW-3/4-200 1~3m³/h 3~4bar 200bar 1.5~3KW 140kg 850*640*680 ≤80db
GOW-5/4-200 5m³/h 3~4bar 200bar 3KW 320kg 1000*800*1100 ≤80db
GOW-10/4-200 10m³/h 3~4bar 200bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-12/4-200 12m³/h 3~4bar 200bar 5.5KW 320kg 1000*800*1100 ≤80db
GOW-15/4-200 15m³/h 3~4bar 200bar 11KW 960kg 1650*950*1470 ≤80db
GOW-20/4-200 20m³/h 3~4bar 200bar 11KW 960kg 1650*950*1470 ≤80db
GOW-30~45/4-200 30m³/h 3~4bar 200bar 15KW 960kg 1650*950*1470 ≤80db
GOW-50~60/4-200 50~60m³/h 3~4bar 200bar 18.5KW 960kg 1650*950*1470 ≤80db
GOW-70~120/4-200 80~120m³/h 3~4bar 200bar 30~45KW 2000kg 2100*1100*1600 ≤80db

Packaging & Shipping

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Storage
Parts: Valve
Application Fields: Medical
Noise Level: Low
Machine Size: Medium
Samples:
US$ 7000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used in Cold Weather Conditions?

Gas air compressors are generally designed to operate in a wide range of environmental conditions, including cold weather. However, there are certain considerations and precautions to keep in mind when using gas air compressors in cold weather conditions. Here’s a detailed explanation:

1. Cold Start-Up:

In cold weather, starting a gas air compressor can be more challenging due to the low temperatures affecting the engine’s performance. It is important to follow the manufacturer’s recommendations for cold start procedures, which may include preheating the engine, using a cold weather starting aid, or ensuring the proper fuel mixture. These measures help facilitate smooth start-up and prevent potential damage to the engine.

2. Fuel Type:

Consider the type of fuel used in the gas air compressor. Some fuels, such as gasoline, can be more susceptible to cold weather issues like vapor lock or fuel line freezing. In extremely cold conditions, it may be necessary to use a fuel additive or switch to a fuel type that is better suited for cold weather operation, such as winter-grade gasoline or propane.

3. Lubrication:

Cold temperatures can affect the viscosity of the oil used in the compressor’s engine. It is important to use the recommended oil grade suitable for cold weather conditions. Thicker oil can become sluggish and impede proper lubrication, while oil that is too thin may not provide adequate protection. Consult the manufacturer’s guidelines for the appropriate oil viscosity range for cold weather operation.

4. Moisture Management:

In cold weather, moisture can condense more readily in the compressed air system. It is crucial to properly drain the moisture from the compressor tank and ensure the air lines are free from any accumulated moisture. Failure to manage moisture can lead to corrosion, freezing of air lines, and decreased performance.

5. Protection from Freezing:

In extremely cold conditions, it is important to protect the gas air compressor from freezing. This may involve using insulated covers or enclosures, providing heat sources in the compressor area, or storing the compressor in a temperature-controlled environment when not in use. Taking measures to prevent freezing helps maintain proper operation and prevents potential damage to the compressor components.

6. Monitoring Performance:

Regularly monitor the performance of the gas air compressor in cold weather conditions. Pay attention to any changes in operation, such as reduced air pressure, increased noise, or difficulties in starting. Promptly address any issues and consult the manufacturer or a qualified technician if necessary.

By considering these factors and taking appropriate precautions, gas air compressors can be effectively used in cold weather conditions. However, it is important to consult the specific guidelines provided by the manufacturer for your compressor model, as they may have additional recommendations or specifications for cold weather operation.

air compressor

Can Gas Air Compressors Be Used for Gas Line Maintenance?

Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:

1. Clearing Debris and Cleaning:

Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.

2. Pressure Testing:

Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.

3. Leak Detection:

Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.

4. Valve and Equipment Maintenance:

Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.

5. Pipe Drying:

Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.

6. Precautions and Regulations:

When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.

It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.

In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.

air compressor

What Industries Commonly Use Gas Air Compressors?

Gas air compressors find applications in various industries where compressed air is required for powering tools, equipment, and systems. These compressors are valued for their portability, versatility, and ability to provide high-pressure air. Here’s a detailed explanation of the industries that commonly use gas air compressors:

1. Construction Industry:

The construction industry extensively utilizes gas air compressors for a wide range of tasks. Compressed air is used to power pneumatic tools such as jackhammers, nail guns, impact wrenches, and concrete breakers. Gas air compressors provide the necessary airflow and pressure to operate these tools efficiently, making them ideal for construction sites.

2. Mining Industry:

In the mining industry, gas air compressors play a vital role in various operations. Compressed air is used to power pneumatic tools for drilling, rock blasting, and excavation. It is also employed in ventilation systems, conveying systems, and pneumatic control devices in mines. Gas air compressors are valued for their durability and ability to operate in rugged and remote mining environments.

3. Oil and Gas Industry:

The oil and gas industry relies on gas air compressors for numerous applications. They are used for well drilling operations, powering pneumatic tools, and maintaining pressure in oil and gas pipelines. Gas air compressors are also utilized in natural gas processing plants, refineries, and petrochemical facilities for various pneumatic processes and equipment.

4. Manufacturing and Industrial Sector:

In the manufacturing and industrial sector, gas air compressors are extensively used in different applications. They provide compressed air for pneumatic tools, such as air-powered drills, sanders, grinders, and spray guns. Compressed air is also used in manufacturing processes such as material handling, assembly line operations, and pneumatic control systems.

5. Automotive Industry:

The automotive industry utilizes gas air compressors for a variety of tasks. Compressed air is employed in automotive assembly plants for pneumatic tools, paint spraying booths, and pneumatic control systems. Gas air compressors are also used in auto repair shops for powering air tools, tire inflation, and operating pneumatic lifts.

6. Agriculture and Farming:

Gas air compressors have applications in the agriculture and farming sector. They are used for tasks such as powering pneumatic tools for crop irrigation, operating pneumatic seeders or planters, and providing compressed air for farm maintenance and repair work. Portable gas air compressors are particularly useful in agricultural settings where electricity may not be readily available.

7. Food and Beverage Industry:

In the food and beverage industry, gas air compressors are employed for various pneumatic processes and equipment. They are used in food packaging operations, pneumatic conveying systems for ingredients and finished products, and air-powered mixing and blending processes. Gas air compressors in this industry are designed to meet strict hygiene and safety standards.

8. Pharmaceutical and Healthcare Sector:

The pharmaceutical and healthcare sector utilizes gas air compressors for critical applications. Compressed air is used in medical devices, dental equipment, laboratory instruments, and pharmaceutical manufacturing processes. Gas air compressors in this industry must adhere to stringent quality standards and maintain air purity.

These are just a few examples of the industries that commonly use gas air compressors. Other sectors, such as power generation, aerospace, marine, and chemical industries, also rely on gas air compressors for specific applications. The versatility and reliability of gas air compressors make them indispensable in numerous industries where compressed air is a vital resource.

China Best Sales Oxygen Gas Compressor 4stage High Pressure Cylinder Filling Oxygen Air Compressor Oil Free Reciprocating Compressor   air compressor repair near meChina Best Sales Oxygen Gas Compressor 4stage High Pressure Cylinder Filling Oxygen Air Compressor Oil Free Reciprocating Compressor   air compressor repair near me
editor by CX 2024-03-03

China Custom Motor Power 75-5600kw Piston Displacement Reciprocating Diaphragm Tetrafluoroethylene Gas Booster Compressor air compressor oil

Product Description

 

Company Profile

   ZheZheJiang nshine Industrial Technology Co., Ltd., as a professional overseas sales team and sales service team, is committed to providing customers with piston compressor and diaphragm compressor solutions. The company adheres to the concept of one-stop service and provides customers with a complete set of air compressor equipment solutions.
 

Product Description

Our products mainly include 2 series: piston compressors and diaphragm compressors, covering more than 30 types of products. These products are widely used in fields such as hydrogen energy, semiconductors, chemicals, petrochemicals, and natural gas transportation. We have over 3000 industrial enterprise users, covering all aspects of the hydrogen energy industry chain, including hydrogen production, filling, and hydrogen refueling station compressors, and providing a complete set of gas compression equipment solutions. As an efficient, energy-saving, environmentally friendly, and reliable compressor type, diaphragm compressors have also achieved great success and have been widely used in various fields.
Product Description:
Piston compressors are a type of positive displacement compressor that are commonly used in the chemical industry for a variety of applications. These compressors work by using a piston and cylinder to compress gas or air, which creates pressure and allows it to be transported through pipelines or used in other processes.
Diaphragm compressor :according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc. (Nitrogen diaphragm compressor, bottle filling compressor, oxygen diaphragm compressor)and especially fit for all kinds of toxic radioactive corrosive compressor

In the chemical industry, piston compressors are used for a variety of functions, including:

Gas compression – Piston compressors are used to compress natural gas, hydrogen, and other gases used in chemical processes. product-list-1.html   product-list-1.html

Pneumatic conveying – Piston compressors are used to transport materials in a powdered or granular form through pipelines.

Refrigeration – Piston compressors are used in refrigeration systems to compress refrigerant gases, which are then used to cool industrial processes and equipment.

Process air compression – Piston compressors are used to compress air for use in chemical processes, such as in pneumatic equipment and air-powered tools.

Piston compressors are popular in the chemical industry because they are reliable, efficient, and can handle specific types of gases and air with ease. Additionally, they require minimal maintenance and can operate at high pressures, making them suitable for many applications

When choosing a piston compressor for use in the chemical industry, it is important to consider factors such as:

Type of gas or air being compressed – Different types of gases and air require different types of compression.

Required flow rate and pressure – The capacity and pressure capabilities of the compressor must meet the requirements of the application.

Environmental conditions – Factors such as temperature, humidity, and altitude can affect the performance of the compressor.

Maintenance requirements – The frequency and complexity of maintenance and servicing should be considered when selecting a compressor.

Overall, piston compressors are an important tool in the chemical industry, providing reliable and efficient compression for a variety of applications. Choosing the right compressor for the specific application is critical to ensuring optimal performance and efficiency.

Piston compressor model:
1. Single-stage piston compressor
Single-stage piston compressor is the simplest compressor, mainly composed of cylinder, piston, crankshaft, connecting rod, valve and other components. It has the advantages of simple structure, easy maintenance and low price, so it is widely used in low-pressure air compression, nitrogen and oxygen production and other occasions. Parameters such as air output volume, air outlet pressure, and rotational speed need to be considered when selecting models.
Common models include: W-1.8/5, W-3.6/5, W-4/5, W-6/5, etc.
2. Two-stage piston compressor
A two-stage piston compressor consists of 2 compressors. The first-stage compressor compresses the gas to a higher intermediate pressure, and then is cooled by the cooler and sent to the second-stage compressor to compress it again to the final pressure. Compared with single-stage piston compressors, two-stage piston compressors have higher outlet pressure, higher efficiency, and wider application range.
Common models include: W-1/3-2/3, W-2.5/5-2.5/5, W-3/6-3.6/6, etc.
3. High-pressure piston compressor
High-pressure piston compressors are mainly used to compress high-pressure gases, such as natural gas, hydrogen, helium, etc. It has a complex structure and needs to be equipped with auxiliary equipment such as gas coolers, gas inlet filters, pressure controllers, etc. It also has the advantages of high outlet pressure, low energy consumption, and smooth operation.
Common models include: W-3/20, W-6/30, W-9/30, etc.
Introduction to the meaning of the model number of diaphragm compressor:
For example: 1G3V-300/4-15 AND     GV3-310/22-62
1G3V-300/4-15 each represents as follows:
“1” means double first-class product;
“G” indicates diaphragm compressor;
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V” means V-shaped structure.
“3V” means there are main and auxiliary connecting rods, and the crankcase is split.
“300” indicates the amount of gas the compressor handles per hour under standard conditions;
“4” means the inlet pressure is 4kg/cm2 (ie 0.4MPa);
“15” means the exhaust pressure is 15kg/cm2 (ie 1.5MPa).
GV3-310/22-62 each represents as follows:
“G” indicates diaphragm compressor;
“V” means V-shaped structure.
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V3” is another series, indicating a side-by-side structure of connecting rods and a one-piece crankcase.

Basic information:Piston compressor model parameters:

  Piston compressor model parameters                
Piston force 800 500 320 250 160 100 65 45 30
Types of compressed gas Hydrogen, nitrogen, natural gas, ethylene, propylene, coal gas, hydrogen chloride, hydrogen fluoride, carbon dioxide, methyl chloride, carbon monoxide, acetylene ammonia, hydrogen monochloride, difluoromethane, tetrafluoroethylene, pentafluoroethylene, hexafluoroethylene, etc.
discharge pressureMPa(G) <=25   <=30
Compression levels 1-4levels 2-6levels 1-3levels
Number of columns 2–4 2–6 1–4
Layout form/Type/Model M/D M/D M/D M/D M/D M/D/P M/D/P M/D/P L/P
route(mm) 280-360 240-320 180-240 200
Rotating speed(rpm) 300-375 333-450 375-585 420-485
Maximum motor power(KW) 5600 3600 3300 2700 1250 800 560 250 75
skid mounted non-skid mounted skid mounted/non -skid mounted
Digital Analog Computing yes
systolic algorithm yes
test According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component
Factory inspection According to the quality standard, carry out no-load mechanical operation test
Customer acceptance Actual working conditions, 72-hour assessment and acceptance
Application  Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power

Basic information:Diaphragm  compressor model parameters
 

Piston force 250 160 110 80 60 45 35 45 10
Types of compressed gas Hydrogen, nitrogen, oxygen, helium, xenon, hydrogen chloride, hydrogen sulfide, nitrogen trifluoride, silicon tetrafluoride, silane
Discharge pressureMPa(G) <=100
Compression levels 1-3levels
Layout form/Type/Model M/D D/L D/L/Z V/Z L/Z L/Z
Route(mm) 210 210/1/0 180 180 150 130 130 105 70
Rotating speed(rpm) 260 360-420
Maximum motor power(KW) 355 250 200 160 110 55 30 22 18.5
Skid mounted skid mounted
Digital Analog Computing yes
Systolic algorithm According to demand
Test According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component
Factory inspection Carry out nitrogen or air full-load mechanical operation test according to quality requirements
Customer acceptance Actual working conditions, 72-hour assessment and acceptance
Application  Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power

Basic information:hydrogen  compressor model parameters

           
Hydrogen gas production compressor
parameter           industry hydrogen from natural gas Hydrogen from coke oven gas Chemical tail gas recovery Fluorine alkali tail gas recovery other
Suction pressure MPa(G) 0-0.5 0-0.2 0-1.0 0-0.1  
Discharge pressureMPa(G) 1.0-3.0 0.8-2.3 1.5-3.0 0.8-2.5  
Capacity  Nm3/min 5-50 10-200 10-200 8-100  
Compression levels 1-3 1-4 1-6 1-5 1-6
Motor power(KW) 30-2000
Skid mounted skid mounted
Digital Analog Computing yes
Systolic algorithm yes
Service Guarantee Professional service team, 7X24 hours all day service
           
           
           
Hydrogen filling compressor + hydrogen refueling station compressor          
parameter  industry 45Mpahydrogen refueling station 90Mpa hydrogen refueling station Hydrogen tank truck Hydrogen flushed into the bottle High pressure hydrogen delivery
Suction pressure MPa(G) 3-20 10-30 0.8-3.0 0.1-30 0.8-3.0
Discharge pressureMPa(G) 45 90 20.0-22.20 15.0-20.0 5.2-20.0
Capacity  Nm3/min 200-2000 100-1000 300-2000 10-800 100-1500
Compression levels 1-2 1-2 1-3 1-2 1-2
Motor power(KW) 30-200 30-185 75-315 3-160 22-200
Skid mounted skid mounted        
Digital Analog Computing yes        
Finite Element Analysis yes        
Service Guarantee Professional service team, 7X24 hours all day service        
           

Detailed Photos

 

 

After Sales Service

We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.

Training plan

1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Month
Warranty: 12 Month
Lubrication Style: Lubricated

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How Do Gas Air Compressors Compare to Diesel Air Compressors?

When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:

1. Fuel Efficiency:

Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.

2. Power Output:

Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.

3. Cost:

In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.

4. Maintenance Requirements:

Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.

5. Environmental Impact:

When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.

6. Portability and Mobility:

Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.

It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.

In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.

air compressor

What Are the Key Components of a Gas Air Compressor Control Panel?

A gas air compressor control panel typically consists of several key components. Here’s a detailed explanation:

1. Power Switch:

The power switch allows the operator to turn the compressor on or off. It is usually a toggle switch or a push-button switch located on the control panel.

2. Pressure Gauges:

Pressure gauges display the compressed air pressure at different stages of the compression process. Commonly, there are two pressure gauges: one to measure the incoming air pressure (suction pressure) and another to measure the outgoing compressed air pressure (discharge pressure).

3. Control Knobs or Buttons:

Control knobs or buttons are used to adjust and set various parameters of the compressor operation. These controls may include pressure settings, on/off timers, automatic start/stop functions, and other operational parameters specific to the compressor model.

4. Emergency Stop Button:

An emergency stop button is a critical safety feature that immediately shuts down the compressor in case of an emergency. Pressing the emergency stop button cuts off power to the compressor and stops its operation.

5. Motor Start/Stop Buttons:

Motor start and stop buttons allow the operator to manually start or stop the compressor motor. These buttons are used when manual control of the motor is required, such as during maintenance or troubleshooting.

6. Control Indicators:

Control indicators include various lights or LEDs that provide visual feedback about the compressor’s status and operation. These indicators may include power indicators, motor running indicators, pressure indicators, and fault indicators to signal any malfunctions or abnormal conditions.

7. Control Panel Display:

Some gas air compressors feature a control panel display that provides real-time information and feedback on the compressor’s performance. The display may show parameters such as operating pressure, temperature, maintenance alerts, fault codes, and other relevant information.

8. Start/Stop Control Circuit:

The start/stop control circuit is responsible for initiating and controlling the motor start and stop sequences. It typically includes relays, contactors, and other electrical components that enable the control panel to safely start and stop the compressor motor.

9. Safety and Protection Devices:

Gas air compressor control panels may incorporate safety and protection devices to safeguard the compressor and prevent potential damage or hazardous situations. These devices can include overload relays, thermal protection, pressure relief valves, and other safety features.

10. Control Panel Enclosure:

The control panel enclosure houses and protects the electrical components and wiring of the control panel. It provides insulation, protection from dust and moisture, and ensures the safety of the operator.

In summary, a gas air compressor control panel typically includes a power switch, pressure gauges, control knobs or buttons, emergency stop button, motor start/stop buttons, control indicators, control panel display (if applicable), start/stop control circuit, safety and protection devices, and a control panel enclosure. These components work together to monitor and control the compressor’s operation, ensure safety, and provide essential information to the operator.

air compressor

How Does a Gas Air Compressor Work?

A gas air compressor works by utilizing a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air can then be used for various applications. Here’s a detailed explanation of how a gas air compressor operates:

1. Gas Engine:

A gas air compressor is equipped with a gas engine as its power source. The gas engine is typically fueled by gasoline, diesel, natural gas, or propane. When the engine is started, the fuel is combusted within the engine’s cylinders, generating mechanical energy in the form of rotational motion.

2. Compressor Pump:

The gas engine drives the compressor pump through a mechanical linkage, such as a belt or direct coupling. The compressor pump is responsible for drawing in atmospheric air and compressing it to a higher pressure. There are different types of compressor pumps used in gas air compressors, including reciprocating, rotary screw, or centrifugal, each with its own operating principles.

3. Intake Stroke:

In a reciprocating compressor pump, the intake stroke begins when the piston moves downward within the cylinder. This creates a vacuum, causing the inlet valve to open and atmospheric air to be drawn into the cylinder. In rotary screw or centrifugal compressors, air is continuously drawn in through the intake port as the compressor operates.

4. Compression Stroke:

During the compression stroke in a reciprocating compressor, the piston moves upward, reducing the volume within the cylinder. This compression action causes the air to be compressed and its pressure to increase. In rotary screw compressors, two interlocking screws rotate, trapping and compressing the air between them. In centrifugal compressors, air is accelerated and compressed by high-speed rotating impellers.

5. Discharge Stroke:

Once the air is compressed, the discharge stroke begins in reciprocating compressors. The piston moves upward, further reducing the volume and forcing the compressed air out of the cylinder through the discharge valve. In rotary screw compressors, the compressed air is discharged through an outlet port as the interlocking screws continue to rotate. In centrifugal compressors, the high-pressure air is discharged from the impeller into the surrounding volute casing.

6. Pressure Regulation:

Gas air compressors often include pressure regulation mechanisms to control the output pressure of the compressed air. This can be achieved through pressure switches, regulators, or control systems that adjust the compressor’s operation based on the desired pressure setting. These mechanisms help maintain a consistent and controlled supply of compressed air for the specific application requirements.

7. Storage and Application:

The compressed air produced by the gas air compressor is typically stored in a receiver tank or used directly for applications. The receiver tank helps stabilize the pressure and provides a reservoir of compressed air for immediate use. From the receiver tank, the compressed air can be distributed through pipelines to pneumatic tools, machinery, or other devices that require the compressed air for operation.

Overall, a gas air compressor operates by using a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air is then regulated and used for various applications, providing a reliable source of power for pneumatic tools, machinery, and other equipment.

China Custom Motor Power 75-5600kw Piston Displacement Reciprocating Diaphragm Tetrafluoroethylene Gas Booster Compressor   air compressor oilChina Custom Motor Power 75-5600kw Piston Displacement Reciprocating Diaphragm Tetrafluoroethylene Gas Booster Compressor   air compressor oil
editor by CX 2024-02-23

China OEM Oil Free Air Piston Compressor with Gas Injection Function for Gas Wellhead with high quality

Product Description

 

Product Description

Parameter

Inlet pressure 0.65-0.8Mpa
Discharge pressure 50Mpa
intake temperature (ºC) -40~40
 outlet temperature (ºC) <70ºC
Exhaust volume (Nm³/h) 1200
Main motor power 240kw
Noise  ≤75dBa
Size 9700mm*3000mm*3000mm
Total power 250KW
Effective tank volume (L) 680
Power source AC POWER
Cooling air cooling

 Function: This injection compressor is specially developed for the working conditions of 50MPa gas injection and oil recovery in oil fields. It adopts the combination of mechanical reciprocating piston compressor (low pressure stage booster) and hydraulic compressor (high pressure stage booster), and combines the respective advantages of mechanical compressor and hydraulic compressor to improve oil recovery.

Advantages:
Compared with the traditional mechanical piston compressor, the use of hydraulic drive piston pressurization, improve the stability of equipment, reduce the failure rate of equipment, to achieve stable and efficient production.

Company Profile

    HangZhou Qidakon Energy Equipment Co., Ltd was established in 2007 in HangZhou, ZheJiang Province, with a plant covering an area of 18,000 square meters. We are specializing in the R&D, production and sales of natural gas compressor series products, we adhere to the professional, fine, specialty, brand development of the road, to provide customers with the best overall technical solutions of high-tech enterprises. Professional production and manufacturing of natural gas compressor for CNG filling station and its service, professional production and manufacturing of natural gas compressor for oil and gas field natural gas extraction, recovery, gathering and transportation, storage and transportation and after-sales service, products and services have covered the CNG market all over the country and major domestic oil and gas fields, and radiation to Russia, India and other Belt and Road foreign markets.
     Qidakon company has always been committed to technological innovation. Its core business team has more than 30 years of working experience in compressor design and manufacturing, and led the drafting of the industry standard for hydraulic natural gas compressors for automobile filling stations (JB/T11422-2013). Obtained nearly 100 national patents, won the national technology innovation fund, and the first in the industry through the whole machine safety explosion-proof certification, by the Ministry of Science and Technology technology innovation fund committee identified as the national technology innovation products, with its “safety, energy saving, environmental protection, investment province, simple structure and many other advantages, in more than 20 provinces (autonomous regions) used, Market share is among the best, its technical advancement, reliability, economy and industry leading position by the national attention.
 Qidakon adheres to the enterprise mission of “gas melts everything, the way to secure the world”, adheres to the business philosophy of “customer first and sustainable development”, forms the core values of “loyalty and dedication, innovation and transcendence, truth-seeking and honest, fair sharing” and the enterprise spirit of “persistence, cooperation, gratitude, tolerance, dedication”, and is determined to become a global CHINAMFG brand of gas supercharging system.

 

Our Advantages

Professional R&D Team

 

About 100 technical patents
 

Industry standard setter

The national industry standard JB/T 11422-2013 setter, Hydraulic Natural Gas Compressor for Automobile Filling Station, drives the technical progress of the industry and leads the development direction of the industry.

Advanced production workshop and strict production process

     Sapare parts area                                                                                                                                                              Welding

     Assemble skiding                                                                                                                     Pre-factory commissioning

                                                                                                                                                     

   Strict quality control process and testing        
 

 

Certification and Honor

 

Partner & Cases

       CNG refueling station site

      Indian partner

 

After Sales Service

Service Purpose: Cusomer’s Satisfaction Our Pursuit

Pre- Sale Services
Provide installation and commissioning training for customer operators according to customer requirements. At the same time, organize and register product information and set up customer files.

Services on sale
The prodessional technical service engineer guides the installation and commissioning on the side or on the line. Andwarning of the possible failure of the equipment.

After-Sales Service
Timely and rapid response ,24-hour on-line service, provide lifelong maintenance.
 

FAQ

1.How long is the lead-time of production?

    30-60Days.

     
2. What is the configuration of the whole skid equipment?

   According to different customer needs to do the country’s explosion-proof certification and industry certification.

3.Which sea ports are supported for shipment?

  ZheJiang ,HangZhou or Other international ports in China.

4.What payment methods are supported?

  T/T, LC, D/P D/D ect.

5.What technical support is available?

   We provide basic parameters for customers’ reference before sales; conduct relevant certifications according to customers’ requirements during sales; be responsible for online debugging until successful operation after sales; arrange technicians to provide on-site guidance when necessary.

6.How long is the warranty period?

   For a period of 12 months from the date of commissioning at end customer site or 15 months from the date of receipt by purchaser , whichever is earlier.

 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours
Warranty: 12 Months
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used for Well Drilling?

Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:

1. Air Drilling Method:

Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.

2. Benefits of Gas Air Compressors:

Gas air compressors offer several advantages for well drilling:

  • Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
  • Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
  • Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
  • Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.

3. Compressor Selection:

When selecting a gas air compressor for well drilling, several factors should be considered:

  • Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
  • Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
  • Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.

4. Safety Considerations:

It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.

5. Other Considerations:

While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.

In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.

air compressor

How Do Gas Air Compressors Contribute to Energy Savings?

Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:

1. Efficient Power Source:

Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.

2. Reduced Electricity Consumption:

Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.

3. Demand-Sensitive Operation:

Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.

4. Energy Recovery:

Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.

5. Proper Sizing and System Design:

Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.

6. Regular Maintenance:

Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.

7. System Optimization:

For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.

In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.

air compressor

What Is a Gas Air Compressor?

A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:

1. Power Source:

A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.

2. Portable and Versatile:

Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.

3. Compressor Pump:

The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.

4. Pressure Regulation:

Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.

5. Applications:

Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.

6. Maintenance and Fuel Considerations:

Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.

Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.

China OEM Oil Free Air Piston Compressor with Gas Injection Function for Gas Wellhead   with high qualityChina OEM Oil Free Air Piston Compressor with Gas Injection Function for Gas Wellhead   with high quality
editor by CX 2024-02-14

China OEM VW-6.2/60 Oil Free Air Compressor Suitable for Petroleum, Chemical, Gas and Other Factories lowes air compressor

Product Description

Product Application
Mainly used for pressurized transmission of natural gas into the pipeline network (Natural pipeline gas extraction and combustible gas recovery tank filling)
It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding bottle making in the food industry, and dust removal of parts in the machine manufacturing industry.
Product Features
1. This series of compressors is an advanced piston compressor unit produced and manufactured using the product technology of Mannes Mandermarg Company in Germany.
2. The product has the characteristics of low noise, low vibration, compact structure, smooth operation, safety and reliability, and high automation level. It can also be configured with a data-driven remote display and control system according to customer requirements.
3. Equipped with alarm and shutdown functions for low oil pressure, low water pressure, high temperature, low inlet pressure, and high exhaust pressure of the compressor, making the operation of the compressor more reliable.
Structure Introduction
The unit consists of a compressor host, electric motor, coupling, flywheel, pipeline system, cooling system, electrical equipment, and auxiliary equipment.

Related products

 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-free
Cooling System: Customized
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Customized
Structure Type: Open Type
Compress Level: Customized
Customization:
Available

|

air compressor

How Do You Maintain a Gas Air Compressor?

Maintaining a gas air compressor is essential to ensure its optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, extends the compressor’s lifespan, and promotes efficient operation. Here are some key maintenance steps for a gas air compressor:

1. Read the Manual:

Before performing any maintenance tasks, thoroughly read the manufacturer’s manual specific to your gas air compressor model. The manual provides important instructions and guidelines for maintenance procedures, including recommended intervals and specific maintenance requirements.

2. Check and Change the Oil:

Gas air compressors typically require regular oil changes to maintain proper lubrication and prevent excessive wear. Check the oil level regularly and change it according to the manufacturer’s recommendations. Use the recommended grade of oil suitable for your compressor model.

3. Inspect and Replace Air Filters:

Inspect the air filters regularly and clean or replace them as needed. Air filters prevent dust, debris, and contaminants from entering the compressor’s internal components. Clogged or dirty filters can restrict airflow and reduce performance. Follow the manufacturer’s guidelines for filter cleaning or replacement.

4. Drain Moisture from the Tank:

Gas air compressors accumulate moisture in the compressed air, which can lead to corrosion and damage to the tank and internal components. Drain the moisture from the tank regularly to prevent excessive moisture buildup. Refer to the manual for instructions on how to properly drain the moisture.

5. Check and Tighten Connections:

Regularly inspect all connections, fittings, and hoses for any signs of leaks or loose connections. Tighten any loose fittings and repair or replace damaged hoses or connectors. Leaks can lead to reduced performance and inefficiency.

6. Inspect Belts and Pulleys:

If your gas air compressor has belts and pulleys, inspect them for wear, tension, and proper alignment. Replace any worn or damaged belts and ensure proper tension to maintain optimal performance.

7. Clean the Exterior and Cooling Fins:

Keep the exterior of the gas air compressor clean from dirt, dust, and debris. Use a soft cloth or brush to clean the surfaces. Additionally, clean the cooling fins regularly to remove any accumulated debris that can impede airflow and cause overheating.

8. Schedule Professional Servicing:

While regular maintenance can be performed by the user, it is also important to schedule professional servicing at recommended intervals. Professional technicians can perform thorough inspections, conduct more complex maintenance tasks, and identify any potential issues that may require attention.

9. Follow Safety Precautions:

When performing maintenance tasks on a gas air compressor, always follow safety precautions outlined in the manual. This may include wearing protective gear, disconnecting the power source, and ensuring proper ventilation in confined spaces.

By following these maintenance steps and adhering to the manufacturer’s guidelines, you can keep your gas air compressor in optimal condition, prolong its lifespan, and ensure safe and efficient operation.

air compressor

What Is the Impact of Altitude on Gas Air Compressor Performance?

Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:

1. Decreased Air Density:

As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.

2. Reduced Compressor Output:

The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.

3. Increased Compressor Workload:

At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.

4. Engine Power Loss:

If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.

5. Considerations for Proper Sizing:

When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.

6. Maintenance and Adjustments:

Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.

In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.

air compressor

Are There Different Types of Gas Air Compressors Available?

Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:

1. Reciprocating Gas Air Compressors:

Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.

2. Rotary Screw Gas Air Compressors:

Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.

3. Rotary Vane Gas Air Compressors:

Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.

4. Centrifugal Gas Air Compressors:

Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.

5. Oil-Free Gas Air Compressors:

Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.

6. Portable Gas Air Compressors:

Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.

7. High-Pressure Gas Air Compressors:

High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.

8. Biogas Air Compressors:

Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.

These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.

China OEM VW-6.2/60 Oil Free Air Compressor Suitable for Petroleum, Chemical, Gas and Other Factories   lowes air compressorChina OEM VW-6.2/60 Oil Free Air Compressor Suitable for Petroleum, Chemical, Gas and Other Factories   lowes air compressor
editor by CX 2024-02-13