Product Description
Company Profile
ZheZheJiang nshine Industrial Technology Co., Ltd., as a professional overseas sales team and sales service team, is committed to providing customers with piston compressor and diaphragm compressor solutions. The company adheres to the concept of one-stop service and provides customers with a complete set of air compressor equipment solutions.
Product Description
Our products mainly include 2 series: piston compressors and diaphragm compressors, covering more than 30 types of products. These products are widely used in fields such as hydrogen energy, semiconductors, chemicals, petrochemicals, and natural gas transportation. We have over 3000 industrial enterprise users, covering all aspects of the hydrogen energy industry chain, including hydrogen production, filling, and hydrogen refueling station compressors, and providing a complete set of gas compression equipment solutions. As an efficient, energy-saving, environmentally friendly, and reliable compressor type, diaphragm compressors have also achieved great success and have been widely used in various fields.
Product Description:
Piston compressors are a type of positive displacement compressor that are commonly used in the chemical industry for a variety of applications. These compressors work by using a piston and cylinder to compress gas or air, which creates pressure and allows it to be transported through pipelines or used in other processes.
Diaphragm compressor :according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc. (Nitrogen diaphragm compressor, bottle filling compressor, oxygen diaphragm compressor)and especially fit for all kinds of toxic radioactive corrosive compressor
In the chemical industry, piston compressors are used for a variety of functions, including:
Gas compression – Piston compressors are used to compress natural gas, hydrogen, and other gases used in chemical processes. product-list-1.html product-list-1.html
Pneumatic conveying – Piston compressors are used to transport materials in a powdered or granular form through pipelines.
Refrigeration – Piston compressors are used in refrigeration systems to compress refrigerant gases, which are then used to cool industrial processes and equipment.
Process air compression – Piston compressors are used to compress air for use in chemical processes, such as in pneumatic equipment and air-powered tools.
Piston compressors are popular in the chemical industry because they are reliable, efficient, and can handle specific types of gases and air with ease. Additionally, they require minimal maintenance and can operate at high pressures, making them suitable for many applications
When choosing a piston compressor for use in the chemical industry, it is important to consider factors such as:
Type of gas or air being compressed – Different types of gases and air require different types of compression.
Required flow rate and pressure – The capacity and pressure capabilities of the compressor must meet the requirements of the application.
Environmental conditions – Factors such as temperature, humidity, and altitude can affect the performance of the compressor.
Maintenance requirements – The frequency and complexity of maintenance and servicing should be considered when selecting a compressor.
Overall, piston compressors are an important tool in the chemical industry, providing reliable and efficient compression for a variety of applications. Choosing the right compressor for the specific application is critical to ensuring optimal performance and efficiency.
Piston compressor model:
1. Single-stage piston compressor
Single-stage piston compressor is the simplest compressor, mainly composed of cylinder, piston, crankshaft, connecting rod, valve and other components. It has the advantages of simple structure, easy maintenance and low price, so it is widely used in low-pressure air compression, nitrogen and oxygen production and other occasions. Parameters such as air output volume, air outlet pressure, and rotational speed need to be considered when selecting models.
Common models include: W-1.8/5, W-3.6/5, W-4/5, W-6/5, etc.
2. Two-stage piston compressor
A two-stage piston compressor consists of 2 compressors. The first-stage compressor compresses the gas to a higher intermediate pressure, and then is cooled by the cooler and sent to the second-stage compressor to compress it again to the final pressure. Compared with single-stage piston compressors, two-stage piston compressors have higher outlet pressure, higher efficiency, and wider application range.
Common models include: W-1/3-2/3, W-2.5/5-2.5/5, W-3/6-3.6/6, etc.
3. High-pressure piston compressor
High-pressure piston compressors are mainly used to compress high-pressure gases, such as natural gas, hydrogen, helium, etc. It has a complex structure and needs to be equipped with auxiliary equipment such as gas coolers, gas inlet filters, pressure controllers, etc. It also has the advantages of high outlet pressure, low energy consumption, and smooth operation.
Common models include: W-3/20, W-6/30, W-9/30, etc.
Introduction to the meaning of the model number of diaphragm compressor:
For example: 1G3V-300/4-15 AND GV3-310/22-62
1G3V-300/4-15 each represents as follows:
“1” means double first-class product;
“G” indicates diaphragm compressor;
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V” means V-shaped structure.
“3V” means there are main and auxiliary connecting rods, and the crankcase is split.
“300” indicates the amount of gas the compressor handles per hour under standard conditions;
“4” means the inlet pressure is 4kg/cm2 (ie 0.4MPa);
“15” means the exhaust pressure is 15kg/cm2 (ie 1.5MPa).
GV3-310/22-62 each represents as follows:
“G” indicates diaphragm compressor;
“V” means V-shaped structure.
“3” indicates the 3rd series of the product manufacturer’s diaphragm compressor series, and does not indicate piston force; the larger the number, the greater the piston force.
“V3” is another series, indicating a side-by-side structure of connecting rods and a one-piece crankcase.
Basic information:Piston compressor model parameters:
| Piston compressor model parameters | |||||||||
| Piston force | 800 | 500 | 320 | 250 | 160 | 100 | 65 | 45 | 30 |
| Types of compressed gas | Hydrogen, nitrogen, natural gas, ethylene, propylene, coal gas, hydrogen chloride, hydrogen fluoride, carbon dioxide, methyl chloride, carbon monoxide, acetylene ammonia, hydrogen monochloride, difluoromethane, tetrafluoroethylene, pentafluoroethylene, hexafluoroethylene, etc. | ||||||||
| discharge pressureMPa(G) | <=25 | <=30 | |||||||
| Compression levels | 1-4levels | 2-6levels | 1-3levels | ||||||
| Number of columns | 2–4 | 2–6 | 1–4 | ||||||
| Layout form/Type/Model | M/D | M/D | M/D | M/D | M/D | M/D/P | M/D/P | M/D/P | L/P |
| route(mm) | 280-360 | 240-320 | 180-240 | 200 | |||||
| Rotating speed(rpm) | 300-375 | 333-450 | 375-585 | 420-485 | |||||
| Maximum motor power(KW) | 5600 | 3600 | 3300 | 2700 | 1250 | 800 | 560 | 250 | 75 |
| skid mounted | non-skid mounted | skid mounted/non -skid mounted | |||||||
| Digital Analog Computing | yes | ||||||||
| systolic algorithm | yes | ||||||||
| test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | According to the quality standard, carry out no-load mechanical operation test | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Basic information:Diaphragm compressor model parameters
| Piston force | 250 | 160 | 110 | 80 | 60 | 45 | 35 | 45 | 10 |
| Types of compressed gas | Hydrogen, nitrogen, oxygen, helium, xenon, hydrogen chloride, hydrogen sulfide, nitrogen trifluoride, silicon tetrafluoride, silane | ||||||||
| Discharge pressureMPa(G) | <=100 | ||||||||
| Compression levels | 1-3levels | ||||||||
| Layout form/Type/Model | M/D | D/L | D/L/Z | V/Z | L/Z | L/Z | |||
| Route(mm) | 210 | 210/1/0 | 180 | 180 | 150 | 130 | 130 | 105 | 70 |
| Rotating speed(rpm) | 260 | 360-420 | |||||||
| Maximum motor power(KW) | 355 | 250 | 200 | 160 | 110 | 55 | 30 | 22 | 18.5 |
| Skid mounted | skid mounted | ||||||||
| Digital Analog Computing | yes | ||||||||
| Systolic algorithm | According to demand | ||||||||
| Test | According to the quality standard, chemical analysis, mechanical performance, flaw detection, hydrostatic test, airtight test and other inspections are carried out for each component | ||||||||
| Factory inspection | Carry out nitrogen or air full-load mechanical operation test according to quality requirements | ||||||||
| Customer acceptance | Actual working conditions, 72-hour assessment and acceptance | ||||||||
| Application | Hydrogen energy, silicon, fluorine chemical industry, petrochemical industry, metallurgy, medicine, aerospace, nuclear power | ||||||||
Detailed Photos
After Sales Service
We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
Training plan
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
| After-sales Service: | 12 Month |
|---|---|
| Warranty: | 12 Month |
| Lubrication Style: | Lubricated |
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
How Do You Maintain a Gas Air Compressor?
Maintaining a gas air compressor is essential to ensure its optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, extends the compressor’s lifespan, and promotes efficient operation. Here are some key maintenance steps for a gas air compressor:
1. Read the Manual:
Before performing any maintenance tasks, thoroughly read the manufacturer’s manual specific to your gas air compressor model. The manual provides important instructions and guidelines for maintenance procedures, including recommended intervals and specific maintenance requirements.
2. Check and Change the Oil:
Gas air compressors typically require regular oil changes to maintain proper lubrication and prevent excessive wear. Check the oil level regularly and change it according to the manufacturer’s recommendations. Use the recommended grade of oil suitable for your compressor model.
3. Inspect and Replace Air Filters:
Inspect the air filters regularly and clean or replace them as needed. Air filters prevent dust, debris, and contaminants from entering the compressor’s internal components. Clogged or dirty filters can restrict airflow and reduce performance. Follow the manufacturer’s guidelines for filter cleaning or replacement.
4. Drain Moisture from the Tank:
Gas air compressors accumulate moisture in the compressed air, which can lead to corrosion and damage to the tank and internal components. Drain the moisture from the tank regularly to prevent excessive moisture buildup. Refer to the manual for instructions on how to properly drain the moisture.
5. Check and Tighten Connections:
Regularly inspect all connections, fittings, and hoses for any signs of leaks or loose connections. Tighten any loose fittings and repair or replace damaged hoses or connectors. Leaks can lead to reduced performance and inefficiency.
6. Inspect Belts and Pulleys:
If your gas air compressor has belts and pulleys, inspect them for wear, tension, and proper alignment. Replace any worn or damaged belts and ensure proper tension to maintain optimal performance.
7. Clean the Exterior and Cooling Fins:
Keep the exterior of the gas air compressor clean from dirt, dust, and debris. Use a soft cloth or brush to clean the surfaces. Additionally, clean the cooling fins regularly to remove any accumulated debris that can impede airflow and cause overheating.
8. Schedule Professional Servicing:
While regular maintenance can be performed by the user, it is also important to schedule professional servicing at recommended intervals. Professional technicians can perform thorough inspections, conduct more complex maintenance tasks, and identify any potential issues that may require attention.
9. Follow Safety Precautions:
When performing maintenance tasks on a gas air compressor, always follow safety precautions outlined in the manual. This may include wearing protective gear, disconnecting the power source, and ensuring proper ventilation in confined spaces.
By following these maintenance steps and adhering to the manufacturer’s guidelines, you can keep your gas air compressor in optimal condition, prolong its lifespan, and ensure safe and efficient operation.
.webp)
How Do You Transport Gas Air Compressors to Different Job Sites?
Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:
1. Equipment Size and Weight:
The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.
2. Transportation Modes:
Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:
- Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
- Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
- Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.
3. Securing and Protection:
It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.
4. Permits and Regulations:
Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.
5. Route Planning:
Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.
6. Equipment Inspection and Maintenance:
Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.
In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.
.webp)
What Fuels Are Commonly Used in Gas Air Compressors?
Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:
1. Gasoline:
Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.
2. Diesel:
Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.
3. Natural Gas:
Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.
4. Propane:
Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.
5. Biogas:
In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.
It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.


editor by CX 2023-11-29
China Best Sales 200 250 350 Bar 20 25 35 MPa Hydrogen Compressor Hydrogen Gas Compressor portable air compressor
Product Description
Product Description
Hydrogen Gas Compressor
Product features :
1. Light structure: compact and portable design and the base comes with a roller, easy to carry and move, can easily meet the needs of field work.
2. Easy to operate: driven by electric motor, the pressurization process does not consume the drive gas.
3. Strong pressurizing capability:Two-stage piston booster technology is use, can easily meet the 35MPa supercharging requirements.
4. Long service life:our company’s unique oil-free piston long-life dynamic sealing technology, as well as clever thermal management design, to ensure its long life reliable work.
5. Low noise: Using adaptive transmission coordination and buffer design,and precision machining and assembling technology, greatly reduce the operating noise. 6. Can be used for multiple types of gas nitrogen, air, hydrogen, helium, carbon dioxide etc.
7. Intelligent timing function: an automatic timer will let you know the maintenance period and service life of the equipment.
Specification
| Model | Inlet pressure | Outlet pressure | Compatible hydrogen generator | Flow rate | Power |
| Rubri-HGC0030 | 3MPa~15MPa | 3MPa~35MPa | ≤ 3Nm3/h | 260g/h@3MPa (679g/[email protected]) |
220V-50Hz-2KW |
| Rubri-HGC5710 | 3MPa~15MPa | 3MPa~35MPa | ≤ 20Nm3/h | 6kg/[email protected] (1.78kg/h@3MPa) |
380V-50HZ-11KW |
If you are interested in hydrogen compressor for larger hydrogen generator, please contact us.
Package
Company profile
Sinopower was established in 2011. We supply various products in the hydrogen energy industry chain, including but not limited to hydrogen production, hydrogen storage, hydrogen supply, electric maintenance and BOP parts, fuel cell system assemblies, fuel cell vehicles, etc.
We have an experienced professional technology research and development team, which can provide professional services from product selection and matching, system design, product customization and development and technical support. We work with CHINAMFG universities and scientific research institutions at home and abroad, such as the University of Science and Technology of China, the University of Auckland, HangZhou University, HangZhou University of Technology, Sun Yat-sen University, etc, The first hydrogen fuel cell forklift has been developed for the domestic leading forklift enterprise CHINAMFG Forklift.
At the same time, our stack, fuel cell system, hydrogen bicycle/scooter, hydrogen UAV and hydrogen production equipment are exported to dozens of countries and regions such as the United States, the Netherlands, Italy, Germany, South Korea, India and Malaysia.
| After-sales Service: | Yes |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Lubricated |
| Samples: |
US$ 21100/Piece
1 Piece(Min.Order) | Order Sample Small
|
|---|
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
.webp)
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
.webp)
Can Gas Air Compressors Be Used for Gas Line Maintenance?
Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:
1. Clearing Debris and Cleaning:
Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.
2. Pressure Testing:
Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.
3. Leak Detection:
Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.
4. Valve and Equipment Maintenance:
Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.
5. Pipe Drying:
Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.
6. Precautions and Regulations:
When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.
It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.
In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.
.webp)
Can Gas Air Compressors Be Used in Remote Locations?
Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:
1. Independence from Electrical Grid:
Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.
2. Mobility and Portability:
Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.
3. Fuel Versatility:
Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.
4. On-Site Power Generation:
In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.
5. Off-Grid Operations:
Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.
6. Emergency Preparedness:
Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.
7. Adaptability to Challenging Environments:
Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.
Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.


editor by CX 2023-10-23
China best Oil-Less Air Cooled Reciprocating Piston Type Nitrogen Oxygen CNG LPG Hydrogen Gas Compressors for Fuel Filling Stations air compressor for sale
Product Description
Piston compressor is a kind of piston reciprocating motion to make gas pressurization and gas delivery compressor mainly consists of working chamber, transmission parts, body and auxiliary parts. The working chamber is directly used to compress the gas, the piston is driven by the piston rod in the cylinder for reciprocating motion, the volume of the working chamber on both sides of the piston changes in turn, the volume decreases on 1 side of the gas due to the pressure increase through the valve discharge, the volume increases on 1 side due to the reduction of air pressure through the valve to absorb the gas.
We have various of gas compressor, such as Hydrogen compressor, Nitrogen compressor, Natrual gas compressor, Biogas compressor, Ammonia compressor, LPG compressor, CNG compressor, Mix gas compressor and so on.
Advantages of Gas Compressor:
1. High quality material, Stable & Reliable operation
2. Low Maintenance cost & Low noise
3. Easy to install on site and connect with the user’s pipeline system to operate
4. Alarm automatic shutdown to protection machine function
5. High pressure and flow
Lubrication includes : Oil lubrication and oil free lubrication;
Cooling method includes: Water cooling and air cooling.
Installation type includes: Stationary,Mobile and Skid Mounting.
Type includes: V-type, W-type,D-type,Z-type
Product description
Hydrogen compressor
Application
This series of compressors are mainly used for (methanol, natural gas, coal gas) cracking hydrogen production, water electrolysis hydrogen production, hydrogen filling bottle, benzene hydrogenation, tar hydrogenation, catalytic cracking and other hydrogen booster compressors.
Product features:
1. The product has the characteristics of low noise, small vibration, compact structure, stable operation, safety and reliability, and high automation level. It can also be configured with a digital remote display and control system according to customer requirements.
2. It has the function of alarm and shutdown of low compressor oil pressure, low water pressure, high temperature, low intake pressure and high exhaust pressure, which makes the compressor run more reliable.
Structure introduction: The unit consists of compressor host, motor, coupling, flywheel, piping system, cooling system, electrical equipment, and auxiliary equipment.
Technical parameters and specifications
| No | Model | Gas flow (Nm3/h) |
Inlet pressure (Mpa) |
Outlet pressure (Mpa) |
Gas | Power (kw) |
Dimensions (mm) |
| 1 | ZW-0.5/15 | 24 | Atmospheric pressure | 1.5 | Hydrogen | 7.5 | 1600*1300*1250 |
| 2 | ZW-0.16/30-50 | 240 | 3 | 5 | Hydrogen | 11 | 1850*1300*1200 |
| 3 | ZW-0.45/22-26 | 480 | 2.2 | 2.6 | Hydrogen | 11 | 1850*1300*1200 |
| 4 | ZW-0.36 /10-26 | 200 | 1 | 2.6 | Hydrogen | 18.5 | 2000*1350*1300 |
| 5 | ZW-1.2/30 | 60 | Atmospheric pressure | 3 | Hydrogen | 18.5 | 2000*1350*1300 |
| 6 | ZW-1.0/1.0-15 | 100 | 0.1 | 1.5 | Hydrogen | 18.5 | 2000*1350*1300 |
| 7 | ZW-0.28/8-50 | 120 | 0.8 | 5 | Hydrogen | 18.5 | 2100*1350*1150 |
| 8 | ZW-0.3/10-40 | 150 | 1 | 4 | Hydrogen | 22 | 1900*1200*1420 |
| 9 | ZW-0.65/8-22 | 300 | 0.8 | 2.2 | Hydrogen | 22 | 1900*1200*1420 |
| 10 | ZW-0.65/8-25 | 300 | 0.8 | 25 | Hydrogen | 22 | 1900*1200*1420 |
| 11 | ZW-0.4/(9-10)-35 | 180 | 0.9-1 | 3.5 | Hydrogen | 22 | 1900*1200*1420 |
| 12 | ZW-0.8/(9-10)-25 | 400 | 0.9-1 | 2.5 | Hydrogen | 30 | 1900*1200*1420 |
| 13 | DW-2.5/0.5-17 | 200 | 0.05 | 1.7 | Hydrogen | 30 | 2200*2100*1250 |
| 14 | ZW-0.4/(22-25)-60 | 350 | 2.2-2.5 | 6 | Hydrogen | 30 | 2000*1600*1200 |
| 15 | DW-1.35/21-26 | 1500 | 2.1 | 2.6 | Hydrogen | 30 | 2000*1600*1200 |
| 16 | ZW-0.5/(25-31)-43.5 | 720 | 2.5-3.1 | 4.35 | Hydrogen | 30 | 2200*2100*1250 |
| 17 | DW-3.4/0.5-17 | 260 | 0.05 | 1.7 | Hydrogen | 37 | 2200*2100*1250 |
| 18 | DW-1.0/7-25 | 400 | 0.7 | 2.5 | Hydrogen | 37 | 2200*2100*1250 |
| 19 | DW-5.0/8-10 | 2280 | 0.8 | 1 | Hydrogen | 37 | 2200*2100*1250 |
| 20 | DW-1.7/5-15 | 510 | 0.5 | 1.5 | Hydrogen | 37 | 2200*2100*1250 |
| 21 | DW-5.0/-7 | 260 | Atmospheric pressure | 0.7 | Hydrogen | 37 | 2200*2100*1250 |
| 22 | DW-3.8/1-7 | 360 | 0.1 | 0.7 | Hydrogen | 37 | 2200*2100*1250 |
| 23 | DW-6.5/8 | 330 | Atmospheric pressure | 0.8 | Hydrogen | 45 | 2500*2100*1400 |
| 24 | DW-5.0/8-10 | 2280 | 0.8 | 1 | Hydrogen | 45 | 2500*2100*1400 |
| 25 | DW-8.4/6 | 500 | Atmospheric pressure | 0.6 | Hydrogen | 55 | 2500*2100*1400 |
| 26 | DW-0.7/(20-23)-60 | 840 | 2-2.3 | 6 | Hydrogen | 55 | 2500*2100*1400 |
| 27 | DW-1.8/47-57 | 4380 | 4.7 | 5.7 | Hydrogen | 75 | 2500*2100*1400 |
| 28 | VW-5.8/0.7-15 | 510 | 0.07 | 1.5 | Hydrogen | 75 | 2500*2100*1400 |
| 29 | DW-10/7 | 510 | Atmospheric pressure | 0.7 | Hydrogen | 75 | 2500*2100*1400 |
| 30 | VW-4.9/2-20 | 750 | 0.2 | 2 | Hydrogen | 90 | 2800*2100*1400 |
| 31 | DW-1.8/15-40 | 1500 | 1.5 | 4 | Hydrogen | 90 | 2800*2100*1400 |
| 32 | DW-5/25-30 | 7000 | 2.5 | 3 | Hydrogen | 90 | 2800*2100*1400 |
| 33 | DW-0.9/20-80 | 1000 | 2 | 8 | Hydrogen | 90 | 2800*2100*1400 |
| 34 | DW-25/3.5-4.5 | 5700 | 0.35 | 0.45 | Hydrogen | 90 | 2800*2100*1400 |
| 35 | DW-1.5/(8-12)-50 | 800 | 0.8-1.2 | 5 | Hydrogen | 90 | 2800*2100*1400 |
| 36 | DW-15/7 | 780 | Atmospheric pressure | 0.7 | Hydrogen | 90 | 2800*2100*1400 |
| 37 | DW-5.5/2-20 | 840 | 0.2 | 2 | Hydrogen | 110 | 3400*2200*1300 |
| 38 | DW-11/0.5-13 | 840 | 0.05 | 1.3 | Hydrogen | 110 | 3400*2200*1300 |
| 39 | DW-14.5/0.04-20 | 780 | 0.004 | 2 | Hydrogen | 132 | 4300*2900*1700 |
| 40 | DW-2.5/10-40 | 1400 | 1 | 4 | Hydrogen | 132 | 4200*2900*1700 |
| 41 | DW-16/0.8-8 | 2460 | 0.08 | 0.8 | Hydrogen | 160 | 4800*3100*1800 |
| 42 | DW-1.3/20-150 | 1400 | 2 | 15 | Hydrogen | 185 | 5000*3100*1800 |
| 43 | DW-16/2-20 | 1500 | 0.2 | 2 | Hydrogen | 28 | 6500*3600*1800 |
Customized is accepted , Pls provide the following information to us ,then we will do the technical proposal and best price to you.
1.Flow rate: _______Nm3/h
2.Gas Media : ______ Hydrogen or Natural Gas or Oxygen or other gas
3.Inlet pressure: ___bar(g)
4.Inlet temperature:_____ºC
5.Outlet pressure:____bar(g)
6.Outlet temperature:____ºC
7.Installation location: _____indoor or outdoor
8.Location ambient temperature: ____ºC
9.Power supply: _V/ _Hz/ _3Ph
10.Cooling method for gas: air cooling or water cooing
Picture display
Applications
Company strength display
HangZhou CZPT Gas Equipment Co., Ltd. is a manufacturer engaged in the research and development, design and production of gas compressors. The company has its own production technology, processing equipment and assembly technology, and has many years of experience in the production of various flammable and explosive special gas compressors.
Huayan compressor products cover almost all gas media, up to 6th-stage compression and 3000kw power. Products can be customized according to customer requirements to better meet customer needs. The products are mainly used in gas compressors in the petroleum industry, chemical and natural gas compressors, industrial compressors, compressors for waste gas treatment and biogas utilization, and compressors for special gases.
After Sales Service
1.Quick response within 2 to 8 hours, with a reaction rate exceeding 98%;
2. 24-hour telephone service, please feel free to contact us;
3. The whole machine is guaranteed for 1 year (excluding pipelines and human factors);
4. Provide consulting service for the service life of the whole machine, and provide 24-hour technical support via email;
5. On-site installation and commissioning by our experienced technicians;
Exhibition Display
Certificate display
Packaging and Shipping
FAQ
1.How to get a prompt quotation of gas compressor ?
1)Flow Rate/Capacity : ___ Nm3/h
2)Suction/ Inlet Pressure : ____ Bar
3)Discharge/Outlet Pressure :____ Bar
4)Gas Medium :_____
5)Voltage and Frequency : ____ V/PH/HZ
2.How long is delivery time ?
Delivery time is around the 30-90 days .
3.What about the voltage of products? Can they be customized?
Yes, the voltage can be customized according to your inquire.
4.Can you accept OEM orders?
Yes, OEM orders is highly welcome.
5.Will you provide some spare parts of the machines?
Yes, we will .
| After-sales Service: | Proive After-Sales Service |
|---|---|
| Warranty: | 18monthes |
| Lubrication Style: | Lubricated |
| Cooling System: | Water Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Angular |
| Customization: |
Available
|
|
|---|

How to Choose the Right Air Compressor
An air compressor uses pressurized air to power a variety of tools. They are most commonly used to power nailers and impact wrenches. Other popular uses for air compressors include paint sprayers and impact wrenches. While all air compressors have the same basic construction, their specialty differs. Ultimately, their differences come down to the amount of air they can push. Read on for information on each type of air compressor. These tools are great for many different purposes, and choosing the right air compressor depends on your specific needs.
Electric motor
While purchasing an electric motor for air compressor, compatibility is a key factor. Not all motors work with the same type of air compressor, so it’s important to check the manufacturer’s instructions before purchasing. By doing this, you can avoid wasting money on an incompatible motor. Another important consideration is speed. A motor’s speed is its rate of rotation, measured in revolutions per minute. It is critical that you purchase a motor with sufficient speed to meet the needs of your air compressor.
Typically, an electric motor for air compressor is 1.5 hp. It is ideal for use with medical equipment and metal-cutting machines. It also performs well under continuous operation and offers a high efficiency and energy-saving performance. Moreover, it features an attractive price, making it a good choice for a wide range of applications. If you are looking for a motor for an air compressor, look no further than a ZYS series.
A motor’s protection class indicates how the motor will operate. Protection classes are specified by the IEC 60034-5. These are stated with two digits and represent the protection against solid objects and water. For example, an IP23 rating means that the motor will be protected from solid objects, while IP54 means that it will protect from dust and water sprayed from all directions. It is vital to choose a motor with the correct protection class for your air compressor.
When choosing an electric motor, you should consider whether it’s compatible with the brand of air compressor. Some may be compatible, while others may require advanced electronics skills to repair. However, most air compressors are covered by warranty, so it’s important to check with the manufacturer if the warranty is still in effect before you spend a dime on a replacement. The motor should be replaced if it has failed to perform as designed.
Oil bath
Air compressors require proper lubrication to function efficiently. The piston must draw air with minimal friction. Depending on their design, air compressors can either be oil-lubricated or oil-free. The former uses oil to reduce piston friction, while the latter splashes it on the cylinder bearings and walls. Such air compressors are commonly known as oil-flooded air compressors. In order to keep their oil baths clean, they are recommended for use in locations with high dust levels.
Start/stop control
An air compressor can be controlled by a start/stop control. This type of control sends a signal to the main motor that activates the compressor when the demand for air falls below a preset limit. This control strategy is effective for smaller air compressors and can be useful for reducing energy costs. Start/stop control is most effective in applications where air pressure does not change frequently and where the compressor is not required to run continuously.
To troubleshoot this problem, you need to check the power supply of your compressor. To check the supply side, use a voltage monitor to determine if power is flowing to the compressor. Ensure that the power supply to the compressor is steady and stable at all times. If it fluctuates, the compressor may not start or stop as expected. If you cannot find the problem with the air compressor power supply, it may be time to replace it.
In addition to the start/stop control, you may want to purchase additional air receivers for your air compressor. These can increase the capacity of air stored and reduce the number of times it starts and stops. Another way to decrease the number of starts per hour is to add more air receivers. Then, you can adjust the control to match your requirements. You can also install a pressure gauge that monitors the compressor’s performance.
Start/stop control for air compressors can be complex, but the basic components are relatively easy to understand. One way to test them is to turn the compressor on or off. It is usually located on the exterior of the motor. If you’re unsure of the location of these components, check the capacitors and make sure that the air compressor is not running while you’re not using it. If it does, try to remove the capacitor.
Variable displacement control is another way to adjust the amount of air flowing into the compressor. By controlling the amount of air, the control can delay the use of additional compressors until more required air is available. In addition to this, the device can also monitor the energy used in the compressor. This control method can result in substantial energy savings. You can even save on the amount of electricity by using variable displacement control. It is essential for efficient compressed air systems.
Variable speed drive
A VFD, or variable frequency drive, is a type of electric motor that adjusts its speed to match the demand for air. It is an efficient way to reduce energy costs and improve system reliability. In fact, studies have shown that a 20% reduction in motor speed can save up to 50% of energy. In addition, a VFD can monitor additional variables such as compressor oil pressure and motor temperature. By eliminating manual checks, a VFD will improve the performance of the application and reduce operating costs.
In addition to reducing energy costs, variable-speed drives also increase productivity. A variable-speed air compressor reduces the risk of system leaks by 30 percent. It also reduces the risk of system leaks by reducing pressure in the system. Because of these advantages, many governments are promoting this technology in their industries. Many even offer incentives to help companies upgrade to variable-speed drives. Therefore, the variable-speed drive can benefit many air compressor installations.
One major benefit of a variable-speed drive is its ability to optimize energy use. Variable frequency drives are able to ramp up and down to match the demand for air. The goal is to optimize the pressure and flow in the system so that the best “dead band” occurs between forty percent and eighty percent of full load. A variable-speed compressor will also increase energy efficiency because of its programmability.
A variable-speed air compressor can also be used to control the amount of air that is compressed by the system. This feature adjusts the frequency of power supplied to the motor based on the demand. If the demand for air is low, the frequency of the motor will reduce to save energy. On the other hand, if there is an excess demand for air, the variable-speed compressor will increase its speed. In addition, this type of air compressor is more efficient than its fixed-speed counterpart.
A VFD has many benefits for compressed air systems. First, it helps stabilize the pressure in the pipe network, thereby reducing the power losses due to upstream pressure. It also helps reduce the power consumption caused by fluctuations in upward pressure. Its benefits are also far-reaching. And as long as the air pressure and air supply is properly sized, a VFD will help optimize the efficiency of compressed air systems.


editor by CX 2023-05-16
China Standard Germany Technology Industrial Silent Piston Natural Gas Compressor Hydrogen Compressor with Dryer, Air Tank and Filters Various of Gas with Good quality
Product Description
Product Description
Our company’s self-developed talents can be widely used in the geology of plateau water shortage, and the skid-mounted can compress various special gas media, which has the characteristics of easy lifting and movement, water saving, exhaust temperature bottom and so on. The exhaust volume is from 3m3-40m3/min, and the exhaust pressure is from 0.7Mpa-35Mpa.
The machine is customized according to customer need, the specific price depends on the configuration requirements (gas composition, exhaust volume and pressure).
Detailed Photos
Product Parameters
| Model | Exhaust Volume m3/min |
Number of stages/Cylinders | Rotational speed r/min |
Inlet pressure MPa |
Exhaust Pressure MPa |
Equipped with power | Drive Power (KW) |
Dimensions mm×mm ×mm |
|
| DW-40/8 | 40 | 2/2 | 740 | 0 | 0.7(0.8) | JSL400-8 | 250 | 3000×2600×1700 | |
| DW-80/2 | 80 | 1/2 | 730 | 0 | 0.2 | Y355L-8 | 250 | 3000×1100×900 | |
| DW-1/0.5-15 | 1 | 2/2 | 730 | 0.05 | 1.5 | YB200L-8 | 15 | 1870×1700×1350 | |
| DW-17/1.5-4.5 | 17 | 1/2 | 730 | 0.15 | 0.45 | JBQ400M-12 | 160 | 3700×3100×1790 | |
| DW-1/0.02-15 | 1 | 2/2 | 730 | 0.002 | 1.5 | YB180L-8 | 11 | 1870×826×1300 | |
| DW-1/2-16 | 1 | 2/2 | 730 | 0.2 | 1.6 | YB225S-B | 11 | 2000×1700×1100 | |
| DW-1/5-20 | 1 | 2/2 | 730 | 0.5 | 2 | YB250L-8 | 18.5 | 2000×1775×1300 | |
| DW-1/0.02-25 | 1 | 2/2 | 730 | 0.002 | 2.5 | YB200L-8 | 15 | 1870×1700×1050 | |
| DW-0.3/20-50 | 0.3 | 2/2 | 730 | 2 | 5 | YB225M-8 | 22 | 1650×2400×930 | |
| DW-1.65/4-22.5 | 1.65 | 2/2 | 730 | 0.4 | 2.25 | YA280M-8 | 22 | 1700×2040×1200 | |
| DW-2.8/(3~5)-28 | 2.8 | 1/2 | 740 | 0.3~0.5 | 2.8 | YB2-315L1-8 | 90 | 4400×2500×2100 | |
| DW-35/1-6 | 35 | 1/2 | 740 | 0.1 | 0.6 | YB355L | 280 | 4400×2500×2100 | |
| DW-12.78/4-31.8 | 12.7 | 2/2 | 485 | 0.4 | 3.18 | YB710-12 | 355 | 7200×5500×3000 | |
| D-0.08/250-500 | 0.08 | 1/2 | 1000 | 25 | 50 | TAD620VE | 135 | 6000×2300×2550 | |
| DWWJD-3/(0~0.2)-7 | 3 | 2/2 | 740 | 0~0.02 | 0.7 | YB250M-8 | 30 | 5000×2300×2400 | |
| DW-13/4.7-26 | 13 | 2/2 | 485 | 0.47 | 2.6 | YB2-500-12 | 315 | 6200×5270×2825 | |
| DW-37/4-9 | 37 | 1/2 | 485 | 0.4 | 0.9 | YAKK-560-12 | 355 | 6200×7745×3150 | |
| D-4.2/(3~6)-250 | 4.2 | 4/4 | 740 | 0.3~0.6 | 25 | YB2-400L-8 | 375 | 6000×4700×2950 | |
| D-2.4/(16-23)-210 | 2.4 | 3/4 | 740 | 1.6~2.3 | 21 | YB2-450-8 | 355 | 5000×3500×2500 | |
| D-2.5/(12~14)-250 | 2.5 | 3/4 | 740 | 1.2~1.4 | 25 | YB2-400L-8 | 250 | 5000×3500×2000 | |
| DF-1.12/17-250 | 1.12 | 3/3 | 740 | 1.7 | 25 | YB2-355M-8 | 160 | 4000×3500×2900 | |
| DW-5/(0.05~0.1)-15 | 5 | 2/2 | 740 | 0.005~0.01 | 1.5 | YBP2-315S-8 | 55 | 3716×2334×1495 | |
| DF-1.4/(16~20)-250 | 1.4 | 3/4 | 585 | 1.6~2 | 25 | YB2-400M-10 | 200 | 4000×3500×2910 | |
| DF-3.5/(7~10)-250 | 3.5 | 3/7 | 740 | 0.7~1 | 25 | T12V190ZL-2 | 550 | 6600×4300×2500 | |
| D-1.7/(35-40)-210 | 1.7 | 2 | 740 | 3.5~4 | 21 | YB2-450-8 | 355 | 5500×4200×1900 | |
| DF-0.32/35-250 | 0.32 | 2/4 | 740 | 3.5 | 25 | YB2-315M-8 | 75 | 2500×2500×2300 | |
| D-1.65/(25~35)-210 | 1.65 | 2 | 740 | 2.5~3.5 | 21 | YB2-450M-8 | 355 | 6500×4300×1900 | |
| D-12.5/0.05-5 | 12.5 | 2/2 | 740 | 0.005 | 0.5 | YB2-315M-8 | 75 | 4300×2590×1700 | |
| DW-2.5/3-12 | 2.5 | 1/2 | 740 | 0.3 | 1.2 | YBP2-280S-8 | 37 | 4000×2300×1900 | |
| DF-2.5/(12~14)-250 | 2.5 | 3/4 | 740 | 1.2~1.4 | 25 | YB2-450S-8 | 37 | 5000×4300×1800 | |
| DF-2.8/(8~16)-250 | 2.8 | 3/4 | 740 | 0.8~1.6 | 25 | YB2-450L-8 | 355 | 5500×4300×1800 | |
| D-1/(25~35)-250 | 1 | 2/2 | 740 | 2.5~3.5 | 25 | YB-355L2-8 | 200 | 5500×3300×1600 | |
| D-1.3/(60~85)-250 | 1.3 | 2/4 | 740 | 6~8.5 | 25 | YB2-450M-8 | 355 | 6500×4300×1900 | |
Company Profile
Certifications
After Sales Service
1.Quick response within 2 to 8 hours, with a reaction rate exceeding 98%;
2. 24-hour telephone service, please feel free to contact us;
3. The whole machine is guaranteed for 1 year (excluding pipelines and human factors);
4. Provide consulting service for the service life of the whole machine, and provide 24-hour technical support via email;
5. On-site installation and commissioning by our experienced technicians;
FAQ
1) Are you factory?
Absolutely! You have touched the primary sources of Cng natural gas/Lpg/Co2/Ammoina Compressor. We are factory.
2) Can you customize produce compressor?
Sure, you need tell us some below information then we can give you a professional manufacture design plan offering
A. The gas compression medium
B. The flow rate: _____Nm3/hr
C. Inlet pressure: _____ Bar
D. Discharge pressure: _____ Bar
E. Inlet temperature
F. Outlet temperature (if you requiring for air cooling or water cooling)
3) What’s your delivery time?
Generally compressor with 30-85 days
4) How long could your air compressor be used?
Generally, more than 20 years.
5) How long is your compressor warranty?
Usually 1 year /12 Months for whole compressor machine. And we can provide further warranty if necessary.
| After-sales Service: | Whole Life After Sale Service |
|---|---|
| Warranty: | 1 Year |
| Lubrication Style: | Oil-less |
| Cooling System: | Air Cooling |
| Cylinder Arrangement: | Balanced Opposed Arrangement |
| Cylinder Position: | Horizontal |
| Customization: |
Available
|
|
|---|

Types of Air Compressors
There are many types of Air Compressors available on the market. Learn which one is right for your needs and what makes one better than another. Find out more about Single-stage models, Oil-free models, and Low-noise models. This article will explain these types and help you decide which one you need. You can also learn about Air Compressors that have single-stage compressors. If you are looking for a high-quality compressor, this article will help you choose a unit.
Air Compressors
Air compressors work by forcing atmospheric air through an inlet valve. As the piston moves down, it pulls atmospheric air into the chamber. As the piston rises, it forces the compressed air out of the cylinder through an exhaust valve. One of the most common types of air compressor is the reciprocating type. Another type of compressor is a single-stage piston. These types of compressors compress air in one stroke – equivalent to the complete rotation of the piston’s crankshaft.
These devices change electrical or mechanical energy into pressurized air. When air is compressed, its volume decreases, increasing its pressure. Air compressors typically have a minimum pressure of 30 bars. The lower pressure band is the range of air pressure. Most compressors are controlled separately, but network controls can be used to interconnect multiple compressors. This type of controller will not work for all types of compressors. There are other types of air compressors that can communicate with each other.
Compressed air has multiple applications in all kinds of industries. In agriculture, it can power pneumatically powered material handling machines for irrigation and crop spraying. Dairy equipments also use compressed air. Compressors are also used in the pharmaceutical industry for mixing tanks, packaging, and conveyor systems. Portable air compressors, which can be powered by diesel fuel, are frequently used at remote drilling sites. Portable air compressors are also commonly used in oil and gas. They can be used to remotely control valves and install reactor rods.
Whether you use an air compressor for agricultural purposes or in a manufacturing setting, there are some features to consider when choosing an air compressor for your needs. A good compressor will have a safety device. It will automatically shut off the input air and output air once sufficient compressing has been achieved. These features will help your air compressor remain efficient and protect your equipment. The safety device is an important feature of any air compressor to increase its overall efficiency.
Vane air compressors are the most common type. They are generally smaller and less powerful than reciprocating piston compressors, so you can use one of these for applications that are under 100 horsepower. The vane air compressors have low compression ratios and high capacities, but they are generally limited to low-power applications. Vane compressors tend to run hot, and they typically have a low compression ratio. It is important to choose the correct oil viscosity for your compressor.
Single-stage models
When comparing single-stage air compressors, look for the term “stages.” Multi-stage compressors use two stages and can handle more capacity and pressure. One stage involves pressurizing air using a piston and a lower-pressure cylinder. This compressed air is then moved to a storage tank. Single-stage models tend to be more energy-efficient than their two-stage counterparts. But if you don’t need a high-pressure cylinder, a single-stage air compressor can be the best choice.
Although single-stage air compressors produce less power, they can produce enough air to power pneumatic tools and other pneumatic equipment. These single-stage units are most useful for smaller-scale home projects and DIY projects. For more industrial purposes, a dual-stage model is the best choice. But if you’re in a hurry, a single-stage unit may be sufficient. Ultimately, it depends on what you plan to do with the air compressor.
Single-stage air compressors feature a single cylinder, one piston stroke for each revolution of pressurized air. Single-stage compressors are typically smaller and more compact, making them a good choice for smaller work environments. Their cfm capacity (cubic feet per minute) is an important indicator of operating capacity. If you plan to use multiple pneumatic tools, you will probably need a higher cfm model. Similarly, the horsepower of single-stage compressors indicates its working capacity. One horsepower moves 550 pounds per foot per minute.
Multi-stage air compressors are generally more expensive and more energy-efficient than single-stage units, but they can offer higher air flow rates. While they may be more complex, they can lower general operating expenses. If you plan on using your air compressor for industrial or commercial use, a dual-stage model might be the best choice. However, if you’re planning to use the air compressor for mass production, a single-stage model may be the best choice.
Single-stage air compressors have the same piston size and number of inlets, while dual-stage models have a smaller first piston and a much longer second piston. Both have a cooling tube in between the two pistons to reduce the air temperature before the second round of compression. The single-stage model is typically small and portable, while the double-stage air compressor is stationary. These compressors can both be stationary and large.
Low-noise models
Despite its name, low-noise models of air compressors are not all the same. The noise level of a compressor can be affected by several factors, including the power source and proximity to the machine. Reciprocal compressors are generally louder than electric ones because of their many moving parts. By contrast, rotary-screw and scroll compressors have fewer moving parts and are quieter.
The noise level of a gas-powered air compressor can be extremely high, making it unsuitable for use indoors. To combat this problem, you can choose an electric model. The noise level of a compressor is primarily caused by motor friction. The cover of a piston is also a major factor in noise, as pistons with minimal covers will produce a lot of noise. Previously, oil was required for a quiet compressor. However, this has changed thanks to the medical industry’s demand for oil-free models.
The CZPT EC28M Quiet Air Compressor is another model that features quiet operation. This air compressor makes 59dB of noise. This level is low enough to allow you to carry on normal conversations while it cycles. In addition, this compressor has an industrial oil-free pump and a 2.8 Amp direct-drive induction motor. These two features make it a great choice for businesses.
Low-noise models of air compressors are available for the construction industry. However, these compressors are not necessarily low-quality, which is why you should consider the noise level of your air tool before purchasing one. The specialists at CZPT can recommend the low-noise models for your particular application and space. Noise can distract people who work near the air compressor. That is why many businesses now opt for these models.
Oil-free models
A number of oil-free models of air compressors are available, but what makes them special? Oil-free compressors don’t contain oil, so they’re lubricated by grease instead. They’re a good choice if you’re working with a small compressor and don’t want to risk damaging it. On the other hand, oil-free models do generate significant amounts of heat, which can damage the compressor. Higher pressure can grind the compressor against itself, or even warp it.
A few words of knowledge can help you choose the best oil-free air compressor for your needs. For example, a compressor’s horsepower is a measurement of how powerful the motor is. Higher horsepower means a higher PSI or ACFM. You can also use the ACFM to compare the two. Scroll technology is a modern air compression system that uses a stationary and mobile spiral. This reduces the volume of air in the compressor by directing it to the center.
Purchasing an oil-free air compressor doesn’t have to be a daunting task, though. A good distributor can advise you on what type of oil-free air compressor is right for you. This way, you can save money and enjoy peace of mind while using your air compressor. And, of course, the best way to get a great deal on an air compressor is to speak to a distributor who is knowledgeable about the products available.
An oil-free air compressor is a great option for businesses that are sensitive to the contamination of air. For example, in the pharmaceutical and food industry, a minuscule oil could spoil a product or even damage production equipment. Oil-free air compressors generally have lower maintenance costs than oil-flooded models because there are fewer moving parts. Because of this, oilless air compressors require fewer maintenance and may still need to be replaced occasionally.
A few advantages of an oil-free air compressor over an oil-lubricated one include lower noise levels. Oil-free air compressors tend to be less noisy and run more quietly than oil-injected ones, but you should still carefully weigh the pros and cons before making a decision. Also, consider how much you use your air compressor before choosing a model. The pros outweigh the cons. In the end, you’ll be glad you chose an oil-free air compressor.


editor by CX 2023-04-25
China Gz-20/32-160 Best Quality Oil-Free Helium Oxygen Hydrogen Air Diaphragm Compressor with high quality
Product Description
Reciprocating Oil-Free of charge Diaphragm/Piston Compressor
( Blue Font To Check out Hyperlink)
Our company focus in creating different sorts of compressors, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Fuel cylinder,and many others. All goods can be customized according to your parameters and other demands.
Process basic principle
Diaphragm compressor according to the requirements of the user, decide on the appropriate kind of compressor to fulfill the requirements of the person. The diaphragm of the steel diaphragm compressor completely separates the gas from the hydraulic oil method to ensure the purity of the gasoline and no pollution to the fuel. At the identical time, superior production technological innovation and accurate membrane cavity style technology are adopted to ensure the provider life of the diaphragm compressor diaphragm. No air pollution: the steel diaphragm group entirely separates the process gasoline from the hydraulic oil and lubricating oil elements to ensure the gasoline purity.
Principal Composition
Diaphragm compressor structure is mostly composed of motor, foundation, crankcase, crankshaft linkage system, cylinder components, crankshaft connecting rod, piston, oil and fuel pipeline, electric control method and some components.
Gas Media sort
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc.(Nitrogen diaphragm compressor,bottle filling compressor,oxygen diaphragm compressor)
GZ Design Straightforward Description
GZ diaphragm compressor is a special composition of the volumetric compressor, is the optimum amount of compression in the discipline of gas compression, this compression strategy Without having secondary pollution, it can make sure the purity of gasoline is much more than 5, and it has really excellent defense against compressed gasoline. It has the traits of huge compression ratio, great sealing efficiency, and the compressed gas is not polluted by lubricating oil and other reliable impurities. Therefore, it is suitable for compressing substantial-purity, rare and precious, flammable, explosive, poisonous, harmful, corrosive and higher-stress gases. The compression technique is normally specified in the world for compressing high-purity gasoline, flammable and explosive gas, poisonous gas and oxygen. And many others. (this sort of as nitrogen diaphragm compressor, oxygen diaphragm compressor, hydrogen sulfide diaphragm compressor, argon diaphragm compressor, and many others.).
Benefit
No leakage: the compressor membrane head is sealed by static “O” ring. The O “ring is made of elastic materials, with long support life and no dynamic seal to ensure no leakage during gasoline compression.
Corrosion resistance: the compressor membrane head can be manufactured of 316L stainless metal, the diaphragm is produced of 301 stainless metal.
Small tightening torque: “O” ring seal, can decrease flange bolt tightening torque, minimize shutdown maintenance time.
Specification
| Model | GZ-15/thirty-200 | Remarks | ||
| Volume Movement | Nm3/h | fifteen | No-Normal | |
| Operating force | Suction force: | 3.0MPa | No-Normal | |
| Exhaust strain: | 20MPa | No-Normal | ||
| Cooling Technique | Water-Cooled | No-Standard | ||
| Ingestion temperature | °C | ~30 | ||
| Inlet strain | MPa | .3~.4 | ||
| Discharge temperature | °C | ≤45ºC | ||
| Sounds | dB(A) | ≤80 | ||
| Energy/Frequence | V/Hz | 380/fifty | No-Standard | |
| Motor Electricity | KW | two.2~45 | ||
| Crankshaft pace | r/min | 420 | ||
| General dimension | L/mm | 1400 | ||
| W/mm | 1000 | |||
| H/mm | 1200 | |||
|
US $14,000-22,000 / SET | |
1 SET (Min. Order) |
###
| Principle: | Displacement Compressor |
|---|---|
| Application: | High Back Pressure Type |
| Performance: | Low Noise, Variable Frequency, Explosion-Proof |
| Mute: | Low Noise |
| Lubrication Style: | Oil-free |
| Drive Mode: | Electric |
###
| Customization: |
Available
|
|---|
###
| Model | GZ-15/30-200 | Remarks | ||
| Volume Flow | Nm3/h | 15 | No-Standard | |
| Working pressure | Suction pressure: | 3.0MPa | No-Standard | |
| Exhaust pressure: | 20MPa | No-Standard | ||
| Cooling Method | Water-Cooled | No-Standard | ||
| Intake temperature | °C | 0~30 | ||
| Inlet pressure | MPa | 0.3~0.4 | ||
| Discharge temperature | °C | ≤45ºC | ||
| Noise | dB(A) | ≤80 | ||
| Power/Frequence | V/Hz | 380/50 | No-Standard | |
| Motor Power | KW | 2.2~45 | ||
| Crankshaft speed | r/min | 420 | ||
| Overall dimension | L/mm | 1400 | ||
| W/mm | 1000 | |||
| H/mm | 1200 | |||
|
US $14,000-22,000 / SET | |
1 SET (Min. Order) |
###
| Principle: | Displacement Compressor |
|---|---|
| Application: | High Back Pressure Type |
| Performance: | Low Noise, Variable Frequency, Explosion-Proof |
| Mute: | Low Noise |
| Lubrication Style: | Oil-free |
| Drive Mode: | Electric |
###
| Customization: |
Available
|
|---|
###
| Model | GZ-15/30-200 | Remarks | ||
| Volume Flow | Nm3/h | 15 | No-Standard | |
| Working pressure | Suction pressure: | 3.0MPa | No-Standard | |
| Exhaust pressure: | 20MPa | No-Standard | ||
| Cooling Method | Water-Cooled | No-Standard | ||
| Intake temperature | °C | 0~30 | ||
| Inlet pressure | MPa | 0.3~0.4 | ||
| Discharge temperature | °C | ≤45ºC | ||
| Noise | dB(A) | ≤80 | ||
| Power/Frequence | V/Hz | 380/50 | No-Standard | |
| Motor Power | KW | 2.2~45 | ||
| Crankshaft speed | r/min | 420 | ||
| Overall dimension | L/mm | 1400 | ||
| W/mm | 1000 | |||
| H/mm | 1200 | |||
How to Repair and Maintain an Air Compressor
A compressor is a device used to move air from one place to another. Air enters the air compressor through the intake valve. Inside the compressor, the vanes on the inner rotor rotate within an eccentric cavity. The self-adjusting length arm divides the space into multiple cavities of different sizes. As the rotor rotates, air fills the cavity. As air flows around the cavity, it builds pressure and is squeezed out of the compressor output.
Positive displacement
Positive displacement air compressors use reciprocating pistons to compress air. Gas is drawn in during the suction stroke and compressed by moving the piston in the opposite direction. It then discharges the compressed air by moving it in the opposite direction. This type of air compressor is most commonly found in automobiles, refrigerators, and other applications that require high pressure. However, it is not as efficient as a centrifugal compressor.
Most modern air compressors use positive displacement. Positive displacement models capture a volume of air in the compression chamber and distribute it when the pump is operating at maximum capacity. They are more economical than their negative displacement counterparts. Reciprocating screw air compressors are the most common positive displacement compressors. The reciprocating screw air compressor adopts a water jacket around the cylinder and is often used in processes such as oil drilling.
A bicycle pump is an example of positive displacement compression. Air is drawn into the cylinder and compressed by the moving piston. A piston compressor works on the same principle, but it uses a rotating crankshaft or connecting rod to complete the movement of the pistons. There are two types of positive displacement compressors: single-acting and double-acting. Both types work on the same principle, both are positive displacement compressors. The difference between the two types is the pressure ratio.
In air compression, positive displacement compression reduces the volume of the fluid and reduces its viscosity. This results in higher pressure ratios and is used in centrifugal, axial, and scroll compressors. Positive displacement is a common feature of most air compressors. Positive displacement compressors offer the same benefits and are more energy-efficient when applied to oil-free and gas applications. This type of compression is usually the best choice for low-pressure applications.
oil free
If you’re looking for an air compressor for your business, consider an oil-free air compressor. These models offer cleaner, quieter operation than traditional air compressors and require less maintenance. They also meet ISO Class 0 or Class 1 air purity requirements. Oil-free air compressors are also quieter, with fewer moving parts and less noise. These advantages make oil-free air compressors an ideal solution for many commercial applications.
Air purity is critical in many industries. Even the tiniest drop of oil can damage production equipment or damage products. The best way to find an oil-free air compressor for your business is to consider the process and end product. As air quality improves, more and more businesses are turning to oil-free compressors. Some of the advantages and disadvantages of these air compressors are:
When choosing an oil-free air compressor, it is important to understand the terminology used in the industry. Knowing these terms will make it easier for you to choose the right compressor for your needs. ACTFM, or actual cubic feet per minute, is an industry term for measuring the amount of air pumped in one minute under rated conditions. Although a simple number, it can be very useful in determining which type of air compressor is best for your application.
The ISO 8573-1 international standard defines air quality and provides air purity classifications. The strictest classification is air purity class 0. Many manufacturers claim that oil-free air compressors meet this standard. However, a class 0 oil-free air compressor does not necessarily mean that the air is free of contaminants. In fact, Class 0 is the benchmark for air purity. While zero air quality is the highest level, that doesn’t mean it’s completely oil-free.
double acting
A double-acting air compressor is a device that uses compressed air to generate electricity. Its working principle is based on piston and connecting rod. The connecting rod connects the crankshaft to the piston through pins and caps. The piston moves as the piston moves. Rods are usually made of forged carbon steel. In terms of service and maintenance, double-acting compressors require regular vise maintenance and proper cleaning.
The displacement of the compressor is a measure of the displacement that the piston can produce in a certain period of time. Displacement is usually expressed in actual cubic feet per minute. The exact calculation depends on the type of cylinder and the configuration of the compressor. Single-acting cylinders can have head-end or crank-end displacement, both of which can be measured using the displacement equation. A double-acting air compressor will use this equation. 4 and 6 calculate the displacement.
Double-acting air compressors have multiple cylinders and are made of cast iron. They are water-cooled and have a mechanical connection between the piston and connecting rod. A double-acting compressor compresses air twice per revolution of the motor. One cylinder moves up, while the other cylinder moves down. The piston moves down, allowing air to enter through valve #1. During the operation of the compressor, the temperature of the air and gas increases.
Double-acting air compressors typically have high pressure and are considered workhorses. Double-acting compressors also feature intercooling and double compression. As a result, these machines tend to last longer than single-acting compressors. Its low speed and dual compression make it a workhorse in the compressor industry. Double-acting air compressors are workhorses and versatile devices.
fuel tank pressure switch
You can adjust the pressure in the air compressor tank by adjusting the differential pressure. You can turn the mainspring clockwise or counterclockwise to increase or decrease the pressure. This valve will open when the pressure is low enough to start the compressor. If the pressure is too low, the valve should be closed. The cut-in and cut-out pressures should be set to appropriate values. After adjusting the tank pressure, check the hysteresis of the tank pressure switch and set the desired shutoff pressure.
If the pressure in the tank falls below the cut-in level, the tank pressure switch must be replaced. You can test the switch with a multimeter. Make sure the switch is not damaged. If you can’t find the switch, you can look at the other sections. If you find any damaged or missing parts, you should replace them. Otherwise, it may be time to check the tank pressure switch. You may need to disassemble the compressor and remove the switch.
The fuel tank pressure switch is an important part of the air compressor. It keeps you informed of the amount of air delivered by the compressor. If your tank or tank is damaged, your readings will be wrong. If the pressure switch is damaged, it will not function properly and result in incorrect readings. Fortunately, there are some easy ways to fix this. To prevent this from happening, keep the tank pressure switch in good condition.
When the air pressure in the tank drops to the cut-in pressure setting, the switch allows power to flow through it. This will start the motor and pump of the air compressor. Then, if the pressure in the tank rises above the cut-off level, the switch will trip and stop the compressor. This will prevent it from being over-pressurized. Power flow will continue to flow to the motor. Depending on your compressor model, you can change the cut-in and cut-out pressures as needed.
energy source
The power supply of the air compressor is very important. Most air compressors run on 12 VDC, which is ideal for automotive use. Alternatively, you can buy a switching power supply for around $20. No matter which power supply you choose, you must ensure that it can support the maximum current of the compressor. You can find power supplies in all sizes, from quarter-horsepower to five-horsepower.
The voltage required for a three-phase air compressor will vary. Three-phase air compressors require three separate power cords and a three-phase electrical service panel. This is because a standard 120/240-volt electrical service panel is not sufficient to power a three-phase compressor. Additionally, three-phase compressors require three separate isolated wires for the engine and motor circuits. Three-phase compressors do not require a neutral wire.


editor by czh 2022-12-28