Product Description
Factory Price 2-in-1 15kw Silent Pm VSD Rotary Screw Air Compressor Laser Cutting Gas Power
 
Factory Price 2-in-1 15kw Silent Pm VSD Rotary Screw Air Compressor Laser Cutting Gas Power
Advantages:
Low noise
Compact Unit Structure and Low Noise Design
  
Low energy consumption
No friction loss, high mechanical efficiency, no resistance loss of suction and exhaust valves
  
Easy to use
Can be unattended all day work, no-load automatic start, full-load automatic shutdown.
  
Strong stability
The exhaust and air pressure are stable under long-term working environment. There is no crash and the failure rate is low.
  
Product Details
Simple and Easy More materials are needed to install
Product Parameters
High Pressure 16bar Combined Silent Laser Cutting Screw Air Compressor Technical Parameters
| 
 Model  | 
 KW  | 
 Pressure(bar)  | 
 FAD(L/Min)  | 
 Air Outlet Pipe Diameter  | 
 Dimension (mm)  | 
   Weight  | 
 Air Tank Volume(L)  | 
| 
 MQ-7.5V  | 
 7.5  | 
 8-13  | 
 0.8-1.1  | 
 Rp1/2  | 
 1700*800*1500  | 
 420  | 
 350  | 
| 
 MQ-11V  | 
 11  | 
 8-13  | 
 0.84-1.6  | 
 Rp1  | 
 1700*800*1700  | 
 490  | 
 400  | 
| 
 MQ-15V  | 
 15  | 
 8-13  | 
 1.4-2.4  | 
 Rp1  | 
 1700*800*1700  | 
 510  | 
 400  | 
| 
 MQ-22V  | 
 22  | 
 8-13  | 
 2.2-3.6  | 
 Rp1-1/4  | 
 1700*800*1800  | 
 610  | 
 500  | 
| 
 MQ-30V  | 
 30  | 
 8-13  | 
 2.93-5.0  | 
 Rp1-1/4  | 
 1700*800*1800  | 
 650  | 
 500  | 
Company Profile
Established in 2012,Muqi Air Compressor Co.,Ltd is a manufacturer which specialized in R&D, design,produce,sale and after-sales service of air compressor.We are located in HangZhou city, ZheJiang province. With the convenient transportation , you are welcomed to visit us at anytime.
As 1 of compressor experts in north of China,Muqi has a complete production line,that is we have nearly all kinds of air compressor,such as screw compressor,portable air compressor,industrial air compressor,rotary compressor,oil-less air compressor,two stage air compressor,permanent magnet variable speed/frequency air compressor,energy save air compressor,variable flow air compressor,permanent magnet synchronous compressor,etc.They are widely used in machinery, light industry, textile, food, petroleum, chemical industry, metallurgy, mining, electric power, urban construction, medical research and national defense research and other industries.
About our team,we have R&D department with 15 engineers and technicians,we can offer the solutions for your specific requirements,not only for different voltage(V) and frequency(Hz),besides,there are sales department,production department,QC department,logistic department.All departments cooperate together to make sure to delivery on time and qualified. 
Certifications
Air compressor service
- After-sale Service
• Any questions or requests before, during or after sales, we would like to help you any time and will find you the best solution in 24 hours.
• Warranty: One year for the whole machine 2 year for air end , and spare parts will be provided with best price. - Special Customized Service
1) Full OEM
• Quantity: at least 5 pcs
• In this plan, we will do all the changes (Color, name plate and logo) as your need, and will not charge extra fee.
2) Half OEM
• Quantity: no limit
• Under this program, we can make the necessary alteration (name plate and logo) but we will charge some extra fee for the name plate, as the name plate factory has the MOQ.
3) Logo OEM
• Quantity: no limit
• Only the logo will be changed to yours, and no extra fee will be charged 
FAQ
- Q:Our voltage is different from China,can we use your air compressor?
 
          A:Sure,voltage and color are customizable,380V/3Ph/50HZ/60HZ, 220V/3Ph/50HZ/60HZ,  440V/3Ph/50HZ/60HZ, 415V/3Ph/50HZ/60HZ or as your required. 
   
2.Q:What’s the warranty terms of your screw air compressor?
       A: 1 year 
   
3.Q: What service will u provide if there is problem during the warranty?
      A:We have after-sales service team.During the warranty period, we will provide free parts replacement and technical guidance no matter what model of air compressor. 
   
4.Q:Can you accept OEM orders?
     A: Yes, with a professional design team, OEM orders are very welcome. 
   
5.Q:What’s your delivery time?
     A: Usually,380V 50HZ we can ship within 7-15 days. Other electric or other colors we will ship within 25-30 days 
   
   6.Q: what’s your payment term?
     A: Generally,it’s T/T. Also we could accept USD, RMB, Euro and other currency 
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
What Is the Noise Level of Gas Air Compressors?
The noise level of gas air compressors can vary depending on several factors, including the compressor’s design, engine type, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:
1. Compressor Design:
The design of the gas air compressor can influence its noise level. Some compressors are engineered with noise reduction in mind, utilizing features such as sound insulation, vibration dampening materials, and mufflers to minimize noise generation. Compressors with enclosed cabinets or acoustic enclosures tend to have lower noise levels compared to open-frame compressors.
2. Engine Type:
The type of engine used in the gas air compressor can impact the noise level. Gas air compressors typically use internal combustion engines powered by gasoline or propane. Gasoline engines tend to produce higher noise levels compared to diesel engines or electric motors. However, advancements in engine technology have led to quieter gasoline engines with improved noise control.
3. Operating Conditions:
The operating conditions of the gas air compressor can affect the noise level. Factors such as the load capacity, speed of operation, and ambient temperature can influence the amount of noise generated. Compressors operating at higher loads or speeds may produce more noise compared to those running at lower levels.
4. Noise-Reducing Features:
Some gas air compressors are equipped with noise-reducing features to minimize sound emissions. These may include built-in silencers, acoustic enclosures, or noise-absorbing materials. Such features help dampen the noise produced by the compressor and reduce its overall noise level.
5. Manufacturer Specifications:
Manufacturers often provide noise level specifications for their gas air compressors. These specifications typically indicate the sound pressure level (SPL) in decibels (dB) at a specific distance from the compressor. It is important to refer to these specifications to get an idea of the expected noise level of a particular compressor model.
6. Distance and Location:
The distance between the gas air compressor and the listener can impact the perceived noise level. As sound waves disperse, the noise level decreases with distance. Locating the compressor in an area that is isolated or distant from occupied spaces can help minimize the impact of noise on the surrounding environment.
It is important to note that gas air compressors, especially those used in industrial or heavy-duty applications, can generate substantial noise levels. Occupational health and safety regulations may require the use of hearing protection for individuals working in close proximity to loud compressors.
Overall, the noise level of gas air compressors can vary, and it is advisable to consult the manufacturer’s specifications and consider noise-reducing features when selecting a compressor. Proper maintenance, such as regular lubrication and inspection of components, can also help minimize noise levels and ensure optimal performance.
.webp)
Can Gas Air Compressors Be Used for Natural Gas Compression?
Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:
1. Different Compressed Gases:
Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.
2. Safety Considerations:
Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.
3. Equipment Compatibility:
Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.
4. Efficiency and Performance:
Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.
5. Regulatory Compliance:
Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.
6. Industry Standards and Practices:
The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.
In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.
.webp)
How Do You Choose the Right Size Gas Air Compressor for Your Needs?
Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:
1. Required Airflow:
Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.
2. Operating Pressure:
Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.
3. Duty Cycle:
Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.
4. Tank Size:
The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.
5. Power Source:
Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.
6. Portability:
Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.
7. Noise Level:
If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.
8. Manufacturer Recommendations:
Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.
By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.


editor by lmc 2024-11-19
China best High Lower Pressure Rotary Water Lubrication Laser Cutting Oilless Oil-Free Screw Scroll Piston Air Compressor for Dental Hospital Bus Truck Blowing Bottle mini air compressor
Product Description
High Lower Pressure Rotary Water Lubrication Laser Cutting Oilless Oil-Free Screw Scroll Piston Air Compressor for Dental Hospital Bus Truck Blowing Bottle
Product Description
Main uses and guarantees:
Energy saving: energy saving more than 15% compared with dry oil-free compressor.
Environment protection: no using any lubricate oil to avoid environment pollution.
Reliability: absolutely guarantee oil-free.
Because the purified water takes part into the compressing process to seal, cool and lubricate, it increases efficiency. With the same motor power, comparing with dry oil-free air compress, there is 15% more air production of oil-free screw air compressor of water lubrication, it reduces the energy consumption greatly. The consumption material of oil-free screw air compressor is only water, air filter and water filter, the maintenance cost is very low.
100% oil-free compressed air, 100% purified compressed air, 100% no oil pollution risk.
In the process of food and drink industry, medical industry, packing industry, electronic manufacture, painting industry, powder coating industry and textile manufacturing, it must avoid any risk of oil pollution, otherwise it would cause serious consequences such as manufacture damages and stop, brand and credit losing. CMN oil-free screw air compressor takes water for lubrication, there is not any lubricate oil in the air end, and at the meantime, because the purified water clean the air, the compressor air is absolutely clear and not any pollution.
Guarantee: High precision, high wear resistance, low noise, smooth and steady, high strength
Our OEM/ODM company provides you what best matches your needs
Our product can be adapted. Please give us the required model name so we can provide you the most accurate quotation.
This chart if for reference, if you need different features, provide us all relevant details for your project and we will be glad to help you finding the product matching your need at the best quality with the lowest price.
Please note the price and the MOQ may vary regarding the product you chose: do not hesitate to contact us to know more!
Main Features
1) Simple structure in linear type ,easy in installation and maintation. 
2) Adopting advanced world famous brand components in pneumatic parts ,electric parts and operation parts. 
3) High pressure double crank to control the die opening and closing. 
4) Running in a high automatization and intellectualization,no pollution 
5) Apply a linker to connect with the air conveyor ,which can directly inline with filling machine . 
Company Profile
In the early stage, we carried out technical cooperation with Simeon of France on high-end oil-free compressors and gradually established a complete set of innovation and R&D systems in China.
In 2006, our company successfully developed the Simeon water lubricated oil-free screw air compressor with independent patent technology, which was listed as the national key new product trial production plan, becoming the first enterprise in China to successfully develop the water lubricated oil-free screw air compressor, and the first enterprise in China to master the manufacturing technology of the water lubricated screw oil-free compressor.
Due to the low exhaust temperature of the water lubricated oil-free machine and the corrosion resistance of the stainless steel host, it is very suitable to compress flammable, explosive and corrosive gases. On the basis of the water lubricated oil-free machine, our company has successfully developed biogas compressor, coal seam gas compressor, and special gas compressor for nitrogen, carbon dioxide, oxygen, formaldehyde, hydrogen and other processes. It also fills the international gap that there is no CHINAMFG for process gas compressor.
With quality as the basic requirement and energy conservation and environmental protection as the guiding ideology, Simeon will further develop special compressors with high-tech content. After years of development, the Simeon screw air compressor manufactured by Jieneng Company has been widely used in medicine, food, petrochemical, metallurgy, chemical industry, machinery, electronics, hydropower, national defense and other industries and fields, and its products are widely distributed all over the world and are welcomed by users.
Certifications
| After-sales Service: | Installation Guide | 
|---|---|
| Warranty: | 6 Years | 
| Lubrication Style: | Oil-free | 
| Cooling System: | Water Cooling | 
| Power Source: | AC Power | 
| Cylinder Position: | Horizontal | 
| Samples: | 
 
                                        US$ 999/Piece 
1 Piece(Min.Order)                                         |  | 
|---|
.webp)
How are air compressors employed in the petrochemical industry?
Air compressors play a vital role in the petrochemical industry, where they are employed for various applications that require compressed air. The petrochemical industry encompasses the production of chemicals and products derived from petroleum and natural gas. Here’s an overview of how air compressors are utilized in the petrochemical industry:
1. Instrumentation and Control Systems:
Air compressors are used to power pneumatic instrumentation and control systems in petrochemical plants. These systems rely on compressed air to operate control valves, actuators, and other pneumatic devices that regulate processes such as flow control, pressure control, and temperature control. Compressed air provides a reliable and clean source of energy for these critical control mechanisms.
2. Pneumatic Tools and Equipment:
Petrochemical plants often utilize pneumatic tools and equipment for various tasks such as maintenance, repair, and construction activities. Air compressors supply the necessary compressed air to power these tools, including pneumatic drills, impact wrenches, grinders, sanders, and painting equipment. The versatility and convenience of compressed air make it an ideal energy source for a wide range of pneumatic tools used in the industry.
3. Process Air and Gas Supply:
Petrochemical processes often require a supply of compressed air and gases for specific applications. Air compressors are employed to generate compressed air for processes such as oxidation, combustion, and aeration. They may also be used to compress gases like nitrogen, hydrogen, and oxygen, which are utilized in various petrochemical reactions and treatment processes.
4. Cooling and Ventilation:
Petrochemical plants require adequate cooling and ventilation systems to maintain optimal operating conditions and ensure the safety of personnel. Air compressors are used to power cooling fans, blowers, and air circulation systems that help maintain the desired temperature, remove heat generated by equipment, and provide ventilation in critical areas.
5. Nitrogen Generation:
Nitrogen is widely used in the petrochemical industry for applications such as blanketing, purging, and inerting. Air compressors are utilized in nitrogen generation systems, where they compress atmospheric air, which is then passed through a nitrogen separation process to produce high-purity nitrogen gas. This nitrogen is used for various purposes, including preventing the formation of explosive mixtures, protecting sensitive equipment, and maintaining the integrity of stored products.
6. Instrument Air:
Instrument air is essential for operating pneumatic instruments, analyzers, and control devices throughout the petrochemical plant. Air compressors supply compressed air that is treated and conditioned to meet the stringent requirements of instrument air quality standards. Instrument air is used for tasks such as pneumatic conveying, pneumatic actuators, and calibration of instruments.
By employing air compressors in the petrochemical industry, operators can ensure reliable and efficient operation of pneumatic systems, power various tools and equipment, support critical processes, and maintain safe and controlled environments.
.webp)
How do you troubleshoot common air compressor problems?
Troubleshooting common air compressor problems can help identify and resolve issues that may affect the performance and functionality of the compressor. Here are some steps to troubleshoot common air compressor problems:
1. No Power:
- Check the power source and ensure the compressor is properly plugged in.
 - Inspect the circuit breaker or fuse box to ensure it hasn’t tripped or blown.
 - Verify that the compressor’s power switch or control panel is turned on.
 
2. Low Air Pressure:
- Check the air pressure gauge on the compressor. If the pressure is below the desired level, the compressor might not be building up enough pressure.
 - Inspect for air leaks in the system. Leaks can cause a drop in pressure. Listen for hissing sounds or use a soapy water solution to identify the location of leaks.
 - Ensure the compressor’s intake filter is clean and not clogged, as this can restrict airflow and reduce pressure.
 
3. Excessive Noise or Vibration:
- Inspect the compressor’s mounting and foundation to ensure it is secure and stable. Loose mounts can cause excessive noise and vibration.
 - Check for loose or damaged components, such as belts, pulleys, or motor mounts. Tighten or replace as necessary.
 - Verify that the compressor’s cooling system, such as the fan or fins, is clean and free from obstructions. Overheating can lead to increased noise and vibration.
 
4. Air Leaks:
- Inspect all connections, valves, fittings, and hoses for leaks. Tighten or replace any loose or damaged components.
 - Apply a soapy water solution to suspected areas and look for bubbles. Bubbles indicate air leaks.
 - Consider using thread sealant or Teflon tape on threaded connections to ensure a proper seal.
 
5. Excessive Moisture in Compressed Air:
- Check the compressor’s drain valve and ensure it is functioning properly. Open the valve to release any accumulated moisture.
 - Inspect and clean the compressor’s moisture separator or air dryer, if equipped.
 - Consider installing additional filtration or drying equipment to remove moisture from the compressed air system.
 
6. Motor Overheating:
- Ensure the compressor’s cooling system is clean and unobstructed.
 - Check the motor’s air intake vents and clean any dust or debris that may be blocking airflow.
 - Verify that the compressor is not being operated in an excessively hot environment.
 - Check the motor’s lubrication levels and ensure they are within the manufacturer’s recommended range.
 - Consider using a thermal overload protector to prevent the motor from overheating.
 
If troubleshooting these common problems does not resolve the issue, it may be necessary to consult the manufacturer’s manual or seek assistance from a qualified technician. Regular maintenance, such as cleaning, lubrication, and inspection, can also help prevent common problems and ensure the optimal performance of the air compressor.
.webp)
How does an air compressor work?
An air compressor works by using mechanical energy to compress and pressurize air, which is then stored and used for various applications. Here’s a detailed explanation of how an air compressor operates:
1. Air Intake: The air compressor draws in ambient air through an intake valve or filter. The air may pass through a series of filters to remove contaminants such as dust, dirt, and moisture, ensuring the compressed air is clean and suitable for its intended use.
2. Compression: The intake air enters a compression chamber, typically consisting of one or more pistons or a rotating screw mechanism. As the piston moves or the screw rotates, the volume of the compression chamber decreases, causing the air to be compressed. This compression process increases the pressure and reduces the volume of the air.
3. Pressure Build-Up: The compressed air is discharged into a storage tank or receiver where it is held at a high pressure. The tank allows the compressed air to be stored for later use and helps to maintain a consistent supply of compressed air, even during periods of high demand.
4. Pressure Regulation: Air compressors often have a pressure regulator that controls the output pressure of the compressed air. This allows the user to adjust the pressure according to the requirements of the specific application. The pressure regulator ensures that the compressed air is delivered at the desired pressure level.
5. Release and Use: When compressed air is needed, it is released from the storage tank or receiver through an outlet valve or connection. The compressed air can then be directed to the desired application, such as pneumatic tools, air-operated machinery, or other pneumatic systems.
6. Continued Operation: The air compressor continues to operate as long as there is a demand for compressed air. When the pressure in the storage tank drops below a certain level, the compressor automatically starts again to replenish the compressed air supply.
Additionally, air compressors may include various components such as pressure gauges, safety valves, lubrication systems, and cooling mechanisms to ensure efficient and reliable operation.
In summary, an air compressor works by drawing in air, compressing it to increase its pressure, storing the compressed air, regulating the output pressure, and releasing it for use in various applications. This process allows for the generation of a continuous supply of compressed air for a wide range of industrial, commercial, and personal uses.


editor by CX 2023-10-09
China 10 hp screw air compressor with air tank and air dryer for laser cutting machine lowes air compressor
Error:获取session失败,

Choosing the Right Air Compressor For Your Home
You will find that air compressors are indispensable tools for a variety of situations, including garages, home workshops, and basements. These tools can power a variety of tools, and each model is sized to suit the job at hand. Because air compressors have only one motor, they are lightweight, compact, and easy to handle. Using one air compressor to power several tools will also reduce the wear and tear on individual components. This article will introduce some important characteristics to look for when choosing the right air compressor for your home.
Positive displacement
A positive displacement compressor applies pressure to a fluid, whereas a centrifugal one does the opposite. A positive displacement compressor creates the desired pressure by trapping air and increasing its volume. Its discharge valve releases the high-pressure gas. These compressors are used in industrial applications and nuclear power plants. The difference between a positive and negative displacement compressor is that a positive displacement compressor can compress and release air at a consistent rate.
A positive displacement air compressor uses a reciprocating piston to compress air. This reduces the volume of the air in the compression chamber, and a discharge valve opens when the pressure reaches the desired level. These compressors are used in bicycle pumps and other pneumatic tools. Positive displacement air compressors have multiple inlet ports and have several configurations. Positive displacement air compressors have a single-acting and double-acting piston, and can be oil-lubricated or oil-free.
A positive displacement air compressor is different from a dynamic compressor. It draws air into the compression chambers and then releases the pressure when the valve is opened. Positive displacement compressors are common in industrial applications and are available in single-acting, double-acting, and oil-lubricated models. Large piston compressors have ventilated intermediate pieces and crossheads on gudgeon pins. Smaller models have permanently sealed crankcases with bearings.
Oil-free
Oil-free air compressors have some advantages over their oil-lubricated counterparts. They do not require lubrication oil because they are coated with Teflon. The material has one of the lowest coefficients of friction and is layered, so it slides past other layers with little effort. Because of this, oil-free compressors tend to be cheaper and still deliver comparable performance. Oil-free compressors are a good choice for industrial applications.
The life of an oil-free air compressor is significantly longer than an oil-lubricated counterpart. These models can operate up to 2,000 hours, four times longer than the average oil-lubed compressor. Oil-free compressors also have a significantly lower operating noise than their oil-lubricated counterparts. And because they don’t need oil changes, they are quieter. Some even last up to 2,000 hours.
An oil-free air compressor is a good choice if your application requires high levels of purity. Several applications require ultra-pure air, and even a drop of oil can cause product spoilage or damage to production equipment. In addition to the health risks, an oil-free air compressor reduces the costs associated with oil contamination and minimizes leaks. It also eliminates the need for oil collection, disposal, and treatment.
A typical oil-free air compressor is very efficient, requiring only about 18% of the full load horsepower. However, oil-free compressors have a higher risk of premature failure and are not recommended for large-scale industrial applications. They may also use up to 18% of the compressor’s full capacity. They may sound appealing, but you must make sure you understand the benefits of an oil-free air compressor before choosing one for your industrial applications.
Single-stage
A single-stage air compressor is designed to provide the power for a single pneumatic tool or device. These machines are generally smaller than two-stage compressors and produce less heat and energy. These machines aren’t designed for heavy-duty industries, but they are still highly effective for a variety of applications, including auto shops, gas stations, and various manufacturing plants. They can also be used in borewells, as they are suitable for small spaces with low air flow requirements.
A single-stage air compressor has one cylinder and two valves – the inlet and the delivery valves. Both of these valves function mechanically, with the inlet valve controlling torque and the delivery one controlling air pressure. Generally, single-stage compressors are powered by a gas engine, but there are also electric models available. The single-stage air compressor is the most common type of air compressor. It has a single cylinder, one piston, and one air cylinder.
The single-stage air compressors are used for small projects or personal use. A two-stage air compressor is more effective for industrial projects. Its longer air end life makes it more efficient. It is also more efficient for use in the automotive industry, where the engine has many cylinders. In general, single-stage compressors require a higher power level. The single-stage model is ideal for small projects, while a two-stage one is suitable for larger-scale arsenals.
CFM
The cubic foot-per-minute (CFM) of an air compressor is the output of the machine. In order to calculate the CFM level, start by looking at the compressor’s specifications. You should know how many cubic feet the unit can hold and how many pounds per square inch it can compress. Once you have these information, you can calculate the CFM. Now you can use these numbers to select an appropriate air compressor for your needs.
The most common way to increase the CFM of an air compressor is to turn the regulator down. By turning the dial down, the air compressor will produce more than 10 CFM. You can also try connecting two output valves. Make sure that the settings are adjusted properly before you begin. This will ensure that your air compressor is functioning at its maximum efficiency and lifespan. To increase the CFM of your air compressor, first check that your regulator is calibrated for the desired pressure level.
To calculate the CFM of an air compressor, first determine the tank volume of the machine. Then, multiply this volume by the time it takes to fill the tank. Then, divide the result by 60 seconds to calculate the CFM. Once you know how much air your machine can hold, you can choose a suitable air compressor. If you’re working in a confined area, you should buy a tool with a large tank.
PSI
The PSI of an air compressor is the pressure that it can output. A typical air compressor has a gauge connected to the airline at the bottom, next to it, or between the two. The gauge tells the actual pressure of the air compressor, while the cut-out pressure is determined by the manufacturer. The manufacturer recommends that you set the cut-out pressure twenty to forty PSI higher than the factory recommended pressure. If you want to set the pressure for your nail gun, you can use the cut-in and cut-out pressures on your compressor, and the tank won’t exceed this range.
The PSI of an air compressor measures the force that it can deliver, which is often in pounds per square inch. For most air tools, you need at least forty to 90 psi. In general, reciprocating air compressors work on an on/off basis. This relationship is known as the duty cycle. All air compressors are rated for a particular duty cycle, such as fifty percent on and twenty-five percent off.
The Psig of an air compressor is not free, as many people believe. The PSI of an air compressor is not free, but it is essential to maintain it for safe operations. If you’re having trouble maintaining a consistent pressure, consider turning down the PSI of your compressor by 2 psig. This will determine the critical pressure for the machine. You’ll also increase the amount of energy in the system by one percent.
Power source
The power source for an air compressor is crucial in its operation. Without the correct voltage and amperage, air compressors will not function properly. The power source must be close to the compressor so that it can plug into an electrical outlet. If it is too far from the outlet, the compressor may not be able to build enough pressure. When this happens, the fuse inside the air compressor will turn off to protect the user. The power source should be a safe distance from the compressor.
Most manufacturers do not specify the power source for an air compressor. Depending on the horsepower, the compressor will require approximately four amps of power. A one-horsepower compressor would draw about twelve amps. If it were powered by a typical 120-volt household supply, its motor would exceed the 15-amp breaker capacity. A larger air compressor, however, will require a separate 15-amp power source, making it impossible to use it with this type of power source.
The power source for an air compressor is typically electrical alternating current (AC) that is equivalent to the voltage on a standard wall outlet. A three-phase air compressor, on the other hand, requires a special AC supply with three electrical offset pulses. Regardless of the type of air compressor, the power source must be compatible with the incoming power service. One of the most common problems when attempting to connect an air compressor to an AC power source is undersized wire. This results in low voltage and high amperes, tripping of over-load relays and blown fuses.


editor by CX 2023-04-27
China wholesaler HANDE All In One Low Noise Energy Saving 7.5KW 11KW 15KW 18.5KW 22KW 16 Bar Screw Air Compressor For Fiber Laser Cutting Machine air compressor for sale
Relevant Industries: Accommodations, Garment Retailers, Developing Content Retailers, Production Plant, Machinery Fix Stores, Foodstuff & Beverage Manufacturing unit, Farms, Restaurant, Residence Use, Meals Shop, Printing Shops, Design works , Power & Mining, Food & Beverage Outlets, Advertising and marketing Business
Showroom Place: Viet Nam
Issue: New
Kind: Screw
Configuration: Stationary
Electricity Supply: AC Electricity
Lubrication Fashion: Lubricated
Mute: Of course
Model Number: HDG-VPM15
Voltage: 220v/110v(can be customized)
Dimension(L*W*H): 1730*780*1640mm
Excess weight: 480KG
Guarantee: 1 Yr
Working Stress: thirteen bar, fifteen.5 Bar
Air ability: 1.2Nm³/min
Equipment Check Report: Presented
Video outgoing-inspection: Provided
Marketing and advertising Kind: Hot Merchandise 2571
Warranty of core components: 2 many years
Core Parts: PLC, Motor, Motor
Gas Variety: Air
Keyword: Compresor De Aire
Packaging Details: International Wood Pack
Port: HangZhou
Merchandise Description
| Product | Device | HDG-VPM15 | HDG-VPM22 | ||
| Rated Discharge Force | Mpa | 1.fifty five | 1.55 | ||
| Rated Discharge Potential | Nm3/min | 1.two | 2.2 | ||
| Exit Temp Of Rear Cooler | C | Ambient Temp +fifteen | Ambient Temp +15 | ||
| Air Inlet/outlet | – | G3/4 | G3/four | ||
| Motor Cooling | – | Air-cooling | Air-cooling | ||
| Pushed Method | – | Immediate Push | Direct Push | ||
| Air Receiver Quantity | Lite | 400 | 400 | ||
| Motor Parameter | ||||||
| Electricity | KW/HP | twenty/fifteen | 30/22 | |||
| Speed | rpm | 4900(326Hz) | 3405716Hz) | |||
| Starting up Manner | – | VSD | VSD | |||
| Voltage | V/Hz | 380/one hundred thirty-326 | 380/90-226 | |||
| Insulation Course | – | F | F | |||
| Safeguard Level | – | IP54 | IP54 | |||
| Suction Gas Feature | ||||
| Temperature | C | ≤40 | ||
| Stress | kg/cm2 | 1.033 | ||
| Humidity | % | 60 | ||
| Air Dryer Parameter | ||||
| Electrical power | KW | 0.52 | ||
| Movement Fee | Nm3/min | 2.four | ||
| Voltage | V/Hz | 220/fifty | ||
| Ingestion Temp | C | 65 | ||
| ATS Air Filter | ||||
| 1 stage | P Course | Particle contain ≤ 3μm | ||
| two stage | M Course | Particel incorporate ≤ 1μm | ||
| 3 phase | H Course | Particle include ≤ .01ppm | ||
| 4 phase | S Course | Oil contain ≤ .003ppm | ||
Choosing an Air Compressor
Considering a new Air Compressor? Here are some tips to make the decision easier. Learn the pros and cons of each type, including the differences between oil-injected and oil-free models, single stage and positive displacement. In addition, learn more about the different technologies that are available for your air compressor. It is important to choose an appropriate unit for the type of work you do. Here are some of the best compressors available today.
Positive displacement
There are several different types of air compressors, but most are positive displacement air compressors. They use a rotary or reciprocating component to compress air. The reciprocating component compresses air by reducing the volume of the chamber. Positive displacement compressors are used in bicycle pumps, chemical plants, and refrigerators. Positive displacement air compressors use multiple inlet ports. Despite the various types, the principle of operation remains the same.
Another type of positive displacement air compressor is a reciprocating piston. The piston inside a cylinder moves up and down, causing the compressed air to fill the upper part of the cylinder. These air compressors are used in a variety of different applications, including blowing bottles and gas pipelines. These air compressors can be water-cooled, lubricated, or non-lubricated. Different types have different capacities and air pressures.
A positive displacement flowmeter uses a rotating chamber that divides continuous fluid into discrete portions. The number of times the chamber is filled and discharged can be used to estimate the flow rate. The rotation speed of the measuring chamber is directly proportional to the flow rate. The drawbacks of this type of positive displacement flowmeter are that it is prone to jamming. If the fluid contains particles, it may be too thick for the meter to determine flow rate.
A negative displacement air compressor was invented in 1860 and is the oldest type of compressor. It uses two lobes positioned in a circular cavity. One rotor is connected to an engine, while the other pushes the other one to spin in the opposite direction. Negative displacement compressors are low-maintenance, but they do require more precision. They are often used in nuclear power plants because they use the kinetic energy of the rotating elements to produce pressure.
Oil-injected
Oil-flooded or oil-injected air compressors use liquid to seal and lubricate moving parts and reduce noise. Oil-flooded air compressors are effective for a variety of pneumatic tools and accessories. Some models have a thermostat that controls the amount of oil used during operation. Other types of oil-flooded air compressors are piston-type models. Here is an overview of the basic differences between these two air compressors.
An oil-injected air compressor is more expensive than a comparable oil-free air compressor, but its advantages far outweigh its disadvantages. An oil-free compressor is quieter, requires less maintenance, and has a lower price tag. It also offers a greater degree of air purity. A number of other advantages may also make this type of air compressor the better choice for many industrial settings. If you need a high-pressure compressor in a tight space, consider the benefits of an oil-free system.
Oil-injected air compressors require more maintenance than oil-free models. Both types of air compressors offer similar capacity and ISO 8573-1 Class 0 and 1-2 purity, but the oil-injected systems require more air-treatment components. They require an activated carbon filter and coalescing filter. Oil-injected air compressors will likely remain the standard for industrial air compressors for many years. And since their performance and efficiency are comparable, it may be worthwhile to invest in some point-of-use air treatment.
Both types of air compressors have their benefits. However, choosing between oil-free and oil-injected air compressors is not as straightforward as you might think. Whichever type you choose, make sure it will meet your needs. The benefits of an oil-injected air compressor outweigh their disadvantages. In general, oil-injected air compressors are more durable and can last longer than oil-free models. The only downside is their higher price.
Oil-free
When choosing an air compressor for your company, you’ll need to determine what it is going to be used for. For example, if you’re planning on using it to power multiple workers, you should consider getting an oil-free compressor. An oil-free compressor, on the other hand, is quieter and can power several workers at a time. If you’re a contractor, the most important consideration will be the type of jobs you’ll be doing. Higher air pressure means greater demand for air flow, and more pressure can damage the equipment.
Oil-free compressed air is certified 100% free of contaminants. Technically, oil-free air is not completely free of foreign matter, but it is extremely low within the limits of practical air quality. A technically oil-free air compressor might have a total oil level of 0.003 mg/m3. If you’re in need of a technically oil-free air compressor, you must install an air treatment equipment after your current compressor.
If you’re in the manufacturing industry, a good oil-free air compressor will save you money and reduce your environmental impact. Many of these tools require air compressors to work, and this equipment will ensure that they don’t get contaminated. To buy the best oil-free compressor, you should learn a bit about the different terms used by compressor repair companies. ACFM, for example, is the amount of air that can be compressed in one minute at rated conditions.
When you’re using an oil-free air compressor, you should know that the overall life of the device will be much shorter. Compared to an oil-flooded rotary screw air compressor, an oil-free compressor typically has a lifespan of 50 thousand hours. But it’s important to understand that this type of compressor can still cause damage to piping and processes. Therefore, you should choose an oil-free compressor when you need to clean air for your business.
Single-stage
A single-stage air compressor, also known as a piston air compressor, compresses air only once before storing it in a cylinder. This stored air has enough energy to power a variety of pneumatic tools, such as screwdrivers, chisels, and wrenches. These units are also ideally suited for low-flow applications and are widely used in gas stations, auto shops, and various manufacturing plants.
A single-stage air compressor uses two valves – one for inlet and one for outlet – to transfer compressed air. Both valves are actuated by springs. The inlet valve has a slight curvature to provide protection from damage. The compressor’s outlet valve opens when the pressure in the cylinder is higher than the pressure in the storage tank. The piston moves very quickly inside the cylinder, exerting a high amount of force throughout the compression process. This high piston speed is a common cause of compressor wear and tear.
A single-stage air compressor is ideal for smaller tradesmen and small construction crews. Its lightweight and compact design make it easier to transport and store. While it may be tempting to buy the first cheap air compressor you see, it’s important to balance the price against performance to choose the right air compressor for your needs. The best single-stage air compressor is one that provides excellent performance and durability. Its two-stage counterpart is designed for larger construction teams and large applications.
The main difference between a single-stage and a two-stage air compressor lies in their capacity. A single-stage air compressor compresses air only once and delivers it into the storage tank, while a two-stage compressor compresses it twice, creating double the pressure. Because of this, single-stage air compressors are cheaper and versatile than their counterparts, which means that they can be used for multiple purposes.
Low-noise
A low-noise air compressor is a type of industrial compressor that is less noisy than regular air compressors. These are generally smaller machines designed for smaller factories and workshops with a few to several employees. They are designed to handle mid-weight volumes of compressed air per day. This type of compressor is especially useful for smaller manufacturing businesses that need to produce compressed air for medical applications. Small breweries can also benefit from the low-noise capabilities of these compressors.
Low-noise air compressors come in various sizes and features. For smaller jobs, you can purchase a one-gallon model that is lightweight and portable. For larger jobs, you can purchase one with a larger tank that can provide more pressure for longer jobs. However, a larger tank will make the compressor heavier and harder to transport. To avoid this, make sure to check the size of the tank and how much power it can handle.
Considering a low-noise air compressor for your business? If so, you’ve come to the right place. There are a variety of affordable and dependable low-noise options to choose from. A CAT 10020C, for example, is designed to provide high-volume air to many outlets at once. A CAT 10020C comes with a 10-gallon tank, wheels, and a carrying handle.
Noise levels can also affect the productivity of employees. When employees work with air compressors in close proximity to each other, they may develop tinnitus. If employees are free from tinnitus because of the loud noise, they are likely to work more efficiently. Moreover, it will be easier for them to focus and communicate efficiently. If you need a compressor, a low-noise one is an excellent choice.

