Product Description
High Quality Oil-free Oxygen Nitrogen Gas Compressors
Minwen high pressure industrial gas compressor belongs to oil-free reciprocating piston type construction. It is divided into three-stage, four-stage or five-stage compression according to the displacement and pressure. It is divided into air-cooled type and water-cooled type according to the cooling type.
An oil-free compressor is a type of gas compressor that operates without the need for lubricating oil in the compression chamber. Traditional gas compressors use oil to lubricate the moving parts and provide a better seal between the compression chamber and the piston or rotor. However, in certain applications where oil contamination is a concern, such as medical and dental facilities, food processing, electronics manufacturing, and painting, oil-free compressors are preferred.
There is no lubricating oil inside the gas compressors, grease lubricated sealing type bearing is adopted for the rotary moving components, the moving seals inside the cylinder are made of self-lubricating material so as to ensure that the compressed gas will never contact any oil.
The machine adopts automatic control mode with low leakage and noise and without the need to arrange dedicated person for attention, and can operate over long term reliably.
Our Advantages
1. Oil-Free Gas: They deliver high-quality, oil-free compressed gases, which is essential in applications where oil contamination can be detrimental to the end product or process.
2. Reduced Maintenance: Oil-free compressors eliminate the need for oil changes, filter replacements, and oil disposal, resulting in lower maintenance requirements and costs.
3. Environmental Friendliness: The absence of oil reduces the risk of oil leaks or spills, making oil-free compressors environmentally friendly.
4. Improved gas Quality: Oil-free compressors provide cleaner gases, free from oil aerosols or vapors, which is essential in sensitive applications like medical and dental procedures or electronics manufacturing.
Product Parameters
| Model | Inlet pressure Bar  | 
Outlet pressure Bar  | 
Capacity Nm3/h  | 
Power kW  | 
Inlet size  | 
Outlet  size  | 
Dimension mm  | 
Weight kg  | 
 Speed r/min  | 
| WWY-(1- 5)/4-150/200 | 4.0 | 150/ 200 | 5 | 4.0 | Rc1/2 | G5/8 | 1350 *850 *1100 | 380 | 470 | 
| WWY- 10/4-150/200 | 4.0 | 150/ 200 | 10 | 5.5 | Rc1/2 | G5/8 | 1350 *1050 *1100 | 410 | 470 | 
| WWY- 15/4-150/200 | 4.0 | 150/ 200 | 15 | 7.5 | Rc1/2 | G5/8 | 1350 *1050 *1100 | 420 | 640 | 
| WWY-20/4-150/200 | 4.0 | 150/ 200 | 20 | 11 | Rc1/2 | G5/8 | 1350 *1050 *1100 | 430 | 580 | 
| WWY-25/4-150/200 | 4.0 | 150/ 200 | 25 | 11 | Rc1/2 | G5/8 | 1350 *1050 *1100 | 430 | 640 | 
| WWY-30/4-150/200 | 4.0 | 150/ 200 | 30 | 15 | Rc1/2 | G5/8 | 1350 *1050 *1100 | 450 | 470 | 
| WWY-35/4-150/200 | 4.0 | 150/ 200 | 35 | 15 | Rc1/2 | G5/8 | 1350 *1050 *1100 | 450 | 470 | 
| WWY-40/4-150/200 | 4.0 | 150/ 200 | 40 | 15 | Rc1/2 | G5/8 | 1350 *1050 *1100 | 450 | 580 | 
| SWY- 45/4-150/200 | 4.0 | 150/ 200 | 45 | 18.5 | Rc1 | G5/8 | 1450 *1100 *1250 | 520 | 580 | 
| SWY- 50/4-150/200 | 4.0 | 150/ 200 | 50 | 18.5 | Rc1 | G5/8 | 1450 *1100 *1250 | 520 | 580 | 
| SWY- 55/4-150/200 | 4.0 | 150/ 200 | 55 | 18.5 | Rc1 | G5/8 | 1450 *1100 *1250 | 520 | 580 | 
| SWY- 60/4-150/200 | 4.0 | 150/ 200 | 60 | 22 | Rc1 | G5/8 | 1450 *1100 *1250 | 540 | 640 | 
| SWY- 65/4-150/200 | 4.0 | 150/ 200 | 65 | 22 | Rc1 | G5/8 | 1450 *1100 *1250 | 540 | 720 | 
| SWY- 70/4-150/200 | 4.0 | 150/ 200 | 70 | 22 | Rc1 | G5/8 | 1450 *1100 *1250 | 540 | 720 | 
| SWY-75/4-150/200 | 4.0 | 150/ 200 | 75 | 22 | Rc1 | G5/8 | 1450*1100*1250 | 540 | 720 | 
Notes: More specification are available based on clients‘ special requirement.
Company Profile
HangZhou Minwen Cryogenic Equipment Co., Ltd. is an established company specializing in industrial gas equipment and cryogenic solutions. With stable economy development in China, Minwen constantly strengthens its supply chain capabilities and resource integration capabilities. We are always on the way of promoting the efficiency and competitiveness, to guarantee high-quality performance of our services.
With advanced technologies and strict quality management, our products have passed the major international third-party quality control certifications such as ASME, CE, and Famous classification society such like BV, TUV, Lloyds and etc.
At Minwen, we pride ourselves on building long-lasting relationships with our clients. We will work with you every step of the way to ensure that your needs are met and your expectations are exceeded. We are committed to providing you with the best price and service we can offer, and we are confident in our ability to deliver top-quality solutions that cater to your specific set of requirements.
FAQ
1. Which countries you can ship the equipment to? 
We ship to worldwide, such as Russia, Paraguay, Brazil, Colombia, Indonesia, Middle East, Africa, etc. 
2. May I have the best price from you?
Sure. We are always on the way of promoting our competitiveness on products price and service.
3. Is your equipment quality good?
Yes. With advanced technologies and strict quality management, our products have passed the major international third-party quality control certifications such as ASME, CE, and Famous classification society such like BV, TUV, Lloyds
4. Do you provide one-stop service so I can save my time and labor?
Yes. Minwen constantly strengthens its supply chain capabilities and resource integration capabilities. You will own a professional team in China by cooperating with Minwen.
5. Where is your company located?
Our Export Office is located in HangZhou, with associated factories across China. This helps our international clients to integrate all the high quality resources together with Minwen.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | Lifetime Aftersales Service | 
|---|---|
| Warranty: | Lifetime Aftersales Service | 
| Lubrication Style: | Oil-free | 
| Cooling System: | Water/ Air Cooling | 
| Cylinder Arrangement: | Balanced Opposed Arrangement | 
| Cylinder Position: | Vertical | 
| Customization: | 
 
                                            Available
                                         
| 
  | 
|---|
.webp)
How Do You Troubleshoot Common Issues with Gas Air Compressors?
Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:
1. Start with Safety Precautions:
Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.
2. Check Power Supply and Connections:
Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.
3. Check Fuel Supply:
For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.
4. Inspect Air Filters:
Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.
5. Check Oil Level and Quality:
If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.
6. Inspect Spark Plug:
If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.
7. Check Belts and Pulleys:
Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.
8. Listen for Unusual Noises:
During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.
9. Consult the Owner’s Manual:
If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.
10. Seek Professional Assistance:
If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.
Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.
.webp)
Can Gas Air Compressors Be Used for Gas Line Maintenance?
Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:
1. Clearing Debris and Cleaning:
Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.
2. Pressure Testing:
Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.
3. Leak Detection:
Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.
4. Valve and Equipment Maintenance:
Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.
5. Pipe Drying:
Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.
6. Precautions and Regulations:
When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.
It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.
In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.
.webp)
What Safety Precautions Should Be Taken When Operating Gas Air Compressors?
Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:
1. Read and Follow the Manufacturer’s Instructions:
Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.
2. Provide Adequate Ventilation:
Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.
3. Wear Personal Protective Equipment (PPE):
Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.
4. Perform Regular Maintenance:
Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.
5. Preventive Measures for Fuel Handling:
If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:
- Store fuel in approved containers and in well-ventilated areas away from ignition sources.
 - Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
 - Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
 - Never smoke or use open flames near the compressor or fuel storage areas.
 
6. Use Proper Electrical Connections:
If the gas air compressor requires electrical power, follow these electrical safety precautions:
- Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
 - Avoid using extension cords unless recommended by the manufacturer.
 - Inspect electrical cords and plugs for damage before use.
 - Do not overload electrical circuits or use improper voltage sources.
 
7. Secure the Compressor:
Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.
8. Familiarize Yourself with Emergency Procedures:
Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.
It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.


editor by CX 2024-02-08
China best Oil-Less Air Cooled Reciprocating Piston Type Nitrogen Oxygen CNG LPG Hydrogen Gas Compressors for Fuel Filling Stations air compressor for sale
Product Description
Piston compressor is a kind of piston reciprocating motion to make gas pressurization and gas delivery compressor mainly consists of working chamber, transmission parts, body and auxiliary parts. The working chamber is directly used to compress the gas, the piston is driven by the piston rod in the cylinder for reciprocating motion, the volume of the working chamber on both sides of the piston changes in turn, the volume decreases on 1 side of the gas due to the pressure increase through the valve discharge, the volume increases on 1 side due to the reduction of air pressure through the valve to absorb the gas.
We have various of gas compressor, such as Hydrogen compressor, Nitrogen compressor, Natrual gas compressor, Biogas compressor, Ammonia compressor, LPG compressor, CNG compressor, Mix gas compressor and so on.
Advantages of Gas Compressor:
1.   High quality material, Stable & Reliable operation
2.  Low Maintenance cost & Low noise
3.  Easy to install on site and connect with the user’s pipeline system to operate
4.  Alarm automatic shutdown to protection machine function
5.  High pressure and flow
Lubrication includes : Oil lubrication and oil free lubrication;
Cooling method includes: Water cooling and air cooling.
Installation type includes: Stationary,Mobile and Skid Mounting.
Type includes: V-type, W-type,D-type,Z-type
Product description
Hydrogen compressor
Application
This series of compressors are mainly used for (methanol, natural gas, coal gas) cracking hydrogen production, water electrolysis hydrogen production, hydrogen filling bottle, benzene hydrogenation, tar hydrogenation, catalytic cracking and other hydrogen booster compressors.
Product features:
1. The product has the characteristics of low noise, small vibration, compact structure, stable operation, safety and reliability, and high automation level. It can also be configured with a digital remote display and control system according to customer requirements.
2. It has the function of alarm and shutdown of low compressor oil pressure, low water pressure, high temperature, low intake pressure and high exhaust pressure, which makes the compressor run more reliable.
Structure introduction: The unit consists of compressor host, motor, coupling, flywheel, piping system, cooling system, electrical equipment, and auxiliary equipment.
Technical parameters and specifications
| No | Model | Gas flow (Nm3/h)  | 
Inlet pressure (Mpa)  | 
Outlet pressure (Mpa)  | 
Gas | Power (kw)  | 
Dimensions (mm)  | 
| 1 | ZW-0.5/15 | 24 | Atmospheric pressure | 1.5 | Hydrogen | 7.5 | 1600*1300*1250 | 
| 2 | ZW-0.16/30-50 | 240 | 3 | 5 | Hydrogen | 11 | 1850*1300*1200 | 
| 3 | ZW-0.45/22-26 | 480 | 2.2 | 2.6 | Hydrogen | 11 | 1850*1300*1200 | 
| 4 | ZW-0.36 /10-26 | 200 | 1 | 2.6 | Hydrogen | 18.5 | 2000*1350*1300 | 
| 5 | ZW-1.2/30 | 60 | Atmospheric pressure | 3 | Hydrogen | 18.5 | 2000*1350*1300 | 
| 6 | ZW-1.0/1.0-15 | 100 | 0.1 | 1.5 | Hydrogen | 18.5 | 2000*1350*1300 | 
| 7 | ZW-0.28/8-50 | 120 | 0.8 | 5 | Hydrogen | 18.5 | 2100*1350*1150 | 
| 8 | ZW-0.3/10-40 | 150 | 1 | 4 | Hydrogen | 22 | 1900*1200*1420 | 
| 9 | ZW-0.65/8-22 | 300 | 0.8 | 2.2 | Hydrogen | 22 | 1900*1200*1420 | 
| 10 | ZW-0.65/8-25 | 300 | 0.8 | 25 | Hydrogen | 22 | 1900*1200*1420 | 
| 11 | ZW-0.4/(9-10)-35 | 180 | 0.9-1 | 3.5 | Hydrogen | 22 | 1900*1200*1420 | 
| 12 | ZW-0.8/(9-10)-25 | 400 | 0.9-1 | 2.5 | Hydrogen | 30 | 1900*1200*1420 | 
| 13 | DW-2.5/0.5-17 | 200 | 0.05 | 1.7 | Hydrogen | 30 | 2200*2100*1250 | 
| 14 | ZW-0.4/(22-25)-60 | 350 | 2.2-2.5 | 6 | Hydrogen | 30 | 2000*1600*1200 | 
| 15 | DW-1.35/21-26 | 1500 | 2.1 | 2.6 | Hydrogen | 30 | 2000*1600*1200 | 
| 16 | ZW-0.5/(25-31)-43.5 | 720 | 2.5-3.1 | 4.35 | Hydrogen | 30 | 2200*2100*1250 | 
| 17 | DW-3.4/0.5-17 | 260 | 0.05 | 1.7 | Hydrogen | 37 | 2200*2100*1250 | 
| 18 | DW-1.0/7-25 | 400 | 0.7 | 2.5 | Hydrogen | 37 | 2200*2100*1250 | 
| 19 | DW-5.0/8-10 | 2280 | 0.8 | 1 | Hydrogen | 37 | 2200*2100*1250 | 
| 20 | DW-1.7/5-15 | 510 | 0.5 | 1.5 | Hydrogen | 37 | 2200*2100*1250 | 
| 21 | DW-5.0/-7 | 260 | Atmospheric pressure | 0.7 | Hydrogen | 37 | 2200*2100*1250 | 
| 22 | DW-3.8/1-7 | 360 | 0.1 | 0.7 | Hydrogen | 37 | 2200*2100*1250 | 
| 23 | DW-6.5/8 | 330 | Atmospheric pressure | 0.8 | Hydrogen | 45 | 2500*2100*1400 | 
| 24 | DW-5.0/8-10 | 2280 | 0.8 | 1 | Hydrogen | 45 | 2500*2100*1400 | 
| 25 | DW-8.4/6 | 500 | Atmospheric pressure | 0.6 | Hydrogen | 55 | 2500*2100*1400 | 
| 26 | DW-0.7/(20-23)-60 | 840 | 2-2.3 | 6 | Hydrogen | 55 | 2500*2100*1400 | 
| 27 | DW-1.8/47-57 | 4380 | 4.7 | 5.7 | Hydrogen | 75 | 2500*2100*1400 | 
| 28 | VW-5.8/0.7-15 | 510 | 0.07 | 1.5 | Hydrogen | 75 | 2500*2100*1400 | 
| 29 | DW-10/7 | 510 | Atmospheric pressure | 0.7 | Hydrogen | 75 | 2500*2100*1400 | 
| 30 | VW-4.9/2-20 | 750 | 0.2 | 2 | Hydrogen | 90 | 2800*2100*1400 | 
| 31 | DW-1.8/15-40 | 1500 | 1.5 | 4 | Hydrogen | 90 | 2800*2100*1400 | 
| 32 | DW-5/25-30 | 7000 | 2.5 | 3 | Hydrogen | 90 | 2800*2100*1400 | 
| 33 | DW-0.9/20-80 | 1000 | 2 | 8 | Hydrogen | 90 | 2800*2100*1400 | 
| 34 | DW-25/3.5-4.5 | 5700 | 0.35 | 0.45 | Hydrogen | 90 | 2800*2100*1400 | 
| 35 | DW-1.5/(8-12)-50 | 800 | 0.8-1.2 | 5 | Hydrogen | 90 | 2800*2100*1400 | 
| 36 | DW-15/7 | 780 | Atmospheric pressure | 0.7 | Hydrogen | 90 | 2800*2100*1400 | 
| 37 | DW-5.5/2-20 | 840 | 0.2 | 2 | Hydrogen | 110 | 3400*2200*1300 | 
| 38 | DW-11/0.5-13 | 840 | 0.05 | 1.3 | Hydrogen | 110 | 3400*2200*1300 | 
| 39 | DW-14.5/0.04-20 | 780 | 0.004 | 2 | Hydrogen | 132 | 4300*2900*1700 | 
| 40 | DW-2.5/10-40 | 1400 | 1 | 4 | Hydrogen | 132 | 4200*2900*1700 | 
| 41 | DW-16/0.8-8 | 2460 | 0.08 | 0.8 | Hydrogen | 160 | 4800*3100*1800 | 
| 42 | DW-1.3/20-150 | 1400 | 2 | 15 | Hydrogen | 185 | 5000*3100*1800 | 
| 43 | DW-16/2-20 | 1500 | 0.2 | 2 | Hydrogen | 28 | 6500*3600*1800 | 
Customized is accepted , Pls provide the following information to us ,then we will do the technical proposal and best price to you.
1.Flow rate:  _______Nm3/h
2.Gas Media : ______ Hydrogen or Natural Gas or Oxygen or other gas 
3.Inlet pressure: ___bar(g)
4.Inlet temperature:_____ºC
5.Outlet pressure:____bar(g)
6.Outlet temperature:____ºC
7.Installation location: _____indoor or outdoor
8.Location ambient temperature: ____ºC
9.Power supply:  _V/  _Hz/ _3Ph
10.Cooling method for gas: air cooling or water cooing
Picture display
Applications
Company strength display
HangZhou CZPT Gas Equipment Co., Ltd. is a manufacturer engaged in the research and development, design and production of gas compressors. The company has its own production technology, processing equipment and assembly technology, and has many years of experience in the production of various flammable and explosive special gas compressors.
Huayan compressor products cover almost all gas media, up to 6th-stage compression and 3000kw power. Products can be customized according to customer requirements to better meet customer needs. The products are mainly used in gas compressors in the petroleum industry, chemical and natural gas compressors, industrial compressors, compressors for waste gas treatment and biogas utilization, and compressors for special gases.
After Sales Service
1.Quick response within 2 to 8 hours, with a reaction rate exceeding 98%;
2. 24-hour telephone service, please feel free to contact us;
3. The whole machine is guaranteed for 1 year (excluding pipelines and human factors);
4. Provide consulting service for the service life of the whole machine, and provide 24-hour technical support via email;
5. On-site installation and commissioning by our experienced technicians;
Exhibition Display
Certificate display
Packaging and Shipping
FAQ
1.How to get a prompt quotation of gas compressor ? 
1)Flow Rate/Capacity : ___ Nm3/h
2)Suction/ Inlet Pressure : ____ Bar
3)Discharge/Outlet Pressure :____ Bar
4)Gas Medium :_____
5)Voltage and Frequency : ____ V/PH/HZ
2.How long is delivery time ?
Delivery time is around the 30-90 days . 
3.What about the voltage of products? Can they be customized?
Yes, the voltage can be customized according to your inquire. 
4.Can you accept OEM orders?
Yes, OEM orders is highly welcome.
5.Will you provide some spare parts of the machines?
Yes, we will .
| After-sales Service: | Proive After-Sales Service | 
|---|---|
| Warranty: | 18monthes | 
| Lubrication Style: | Lubricated | 
| Cooling System: | Water Cooling | 
| Cylinder Arrangement: | Balanced Opposed Arrangement | 
| Cylinder Position: | Angular | 
| Customization: | 
 
                                            Available
                                         
| 
  | 
|---|

How to Choose the Right Air Compressor
An air compressor uses pressurized air to power a variety of tools. They are most commonly used to power nailers and impact wrenches. Other popular uses for air compressors include paint sprayers and impact wrenches. While all air compressors have the same basic construction, their specialty differs. Ultimately, their differences come down to the amount of air they can push. Read on for information on each type of air compressor. These tools are great for many different purposes, and choosing the right air compressor depends on your specific needs.
Electric motor
While purchasing an electric motor for air compressor, compatibility is a key factor. Not all motors work with the same type of air compressor, so it’s important to check the manufacturer’s instructions before purchasing. By doing this, you can avoid wasting money on an incompatible motor. Another important consideration is speed. A motor’s speed is its rate of rotation, measured in revolutions per minute. It is critical that you purchase a motor with sufficient speed to meet the needs of your air compressor.
Typically, an electric motor for air compressor is 1.5 hp. It is ideal for use with medical equipment and metal-cutting machines. It also performs well under continuous operation and offers a high efficiency and energy-saving performance. Moreover, it features an attractive price, making it a good choice for a wide range of applications. If you are looking for a motor for an air compressor, look no further than a ZYS series.
A motor’s protection class indicates how the motor will operate. Protection classes are specified by the IEC 60034-5. These are stated with two digits and represent the protection against solid objects and water. For example, an IP23 rating means that the motor will be protected from solid objects, while IP54 means that it will protect from dust and water sprayed from all directions. It is vital to choose a motor with the correct protection class for your air compressor.
When choosing an electric motor, you should consider whether it’s compatible with the brand of air compressor. Some may be compatible, while others may require advanced electronics skills to repair. However, most air compressors are covered by warranty, so it’s important to check with the manufacturer if the warranty is still in effect before you spend a dime on a replacement. The motor should be replaced if it has failed to perform as designed.
Oil bath
Air compressors require proper lubrication to function efficiently. The piston must draw air with minimal friction. Depending on their design, air compressors can either be oil-lubricated or oil-free. The former uses oil to reduce piston friction, while the latter splashes it on the cylinder bearings and walls. Such air compressors are commonly known as oil-flooded air compressors. In order to keep their oil baths clean, they are recommended for use in locations with high dust levels.
Start/stop control
An air compressor can be controlled by a start/stop control. This type of control sends a signal to the main motor that activates the compressor when the demand for air falls below a preset limit. This control strategy is effective for smaller air compressors and can be useful for reducing energy costs. Start/stop control is most effective in applications where air pressure does not change frequently and where the compressor is not required to run continuously.
To troubleshoot this problem, you need to check the power supply of your compressor. To check the supply side, use a voltage monitor to determine if power is flowing to the compressor. Ensure that the power supply to the compressor is steady and stable at all times. If it fluctuates, the compressor may not start or stop as expected. If you cannot find the problem with the air compressor power supply, it may be time to replace it.
In addition to the start/stop control, you may want to purchase additional air receivers for your air compressor. These can increase the capacity of air stored and reduce the number of times it starts and stops. Another way to decrease the number of starts per hour is to add more air receivers. Then, you can adjust the control to match your requirements. You can also install a pressure gauge that monitors the compressor’s performance.
Start/stop control for air compressors can be complex, but the basic components are relatively easy to understand. One way to test them is to turn the compressor on or off. It is usually located on the exterior of the motor. If you’re unsure of the location of these components, check the capacitors and make sure that the air compressor is not running while you’re not using it. If it does, try to remove the capacitor.
Variable displacement control is another way to adjust the amount of air flowing into the compressor. By controlling the amount of air, the control can delay the use of additional compressors until more required air is available. In addition to this, the device can also monitor the energy used in the compressor. This control method can result in substantial energy savings. You can even save on the amount of electricity by using variable displacement control. It is essential for efficient compressed air systems.
Variable speed drive
A VFD, or variable frequency drive, is a type of electric motor that adjusts its speed to match the demand for air. It is an efficient way to reduce energy costs and improve system reliability. In fact, studies have shown that a 20% reduction in motor speed can save up to 50% of energy. In addition, a VFD can monitor additional variables such as compressor oil pressure and motor temperature. By eliminating manual checks, a VFD will improve the performance of the application and reduce operating costs.
In addition to reducing energy costs, variable-speed drives also increase productivity. A variable-speed air compressor reduces the risk of system leaks by 30 percent. It also reduces the risk of system leaks by reducing pressure in the system. Because of these advantages, many governments are promoting this technology in their industries. Many even offer incentives to help companies upgrade to variable-speed drives. Therefore, the variable-speed drive can benefit many air compressor installations.
One major benefit of a variable-speed drive is its ability to optimize energy use. Variable frequency drives are able to ramp up and down to match the demand for air. The goal is to optimize the pressure and flow in the system so that the best “dead band” occurs between forty percent and eighty percent of full load. A variable-speed compressor will also increase energy efficiency because of its programmability.
A variable-speed air compressor can also be used to control the amount of air that is compressed by the system. This feature adjusts the frequency of power supplied to the motor based on the demand. If the demand for air is low, the frequency of the motor will reduce to save energy. On the other hand, if there is an excess demand for air, the variable-speed compressor will increase its speed. In addition, this type of air compressor is more efficient than its fixed-speed counterpart.
A VFD has many benefits for compressed air systems. First, it helps stabilize the pressure in the pipe network, thereby reducing the power losses due to upstream pressure. It also helps reduce the power consumption caused by fluctuations in upward pressure. Its benefits are also far-reaching. And as long as the air pressure and air supply is properly sized, a VFD will help optimize the efficiency of compressed air systems.


editor by CX 2023-05-16