Product Description
Company Profile
Product Description
Product Application
Mainly used for pressurized transmission of natural gas into the pipeline network (Natural pipeline gas extraction and combustible gas recovery tank filling)
It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding bottle making in the food industry, and dust removal of parts in the machine manufacturing industry.
Product Features
1. This series of compressors is an advanced piston compressor unit produced and manufactured using the product technology of Mannes Mandermarg Company in Germany.
2. The product has the characteristics of low noise, low vibration, compact structure, smooth operation, safety and reliability, and high automation level. It can also be configured with a data-driven remote display and control system according to customer requirements.
3. Equipped with alarm and shutdown functions for low oil pressure, low water pressure, high temperature, low inlet pressure, and high exhaust pressure of the compressor, making the operation of the compressor more reliable.
Structure Introduction
The unit consists of a compressor host, electric motor, coupling, flywheel, pipeline system, cooling system, electrical equipment, and auxiliary equipment.
  
Detailed Photos
Product Parameters
| NO. | MODEL | Compressed medium | Flow rate Nm³/h  | 
Inlet pressure MPa  | 
Outlet pressure MPa  | 
Rotating speed r/min  | 
Motor power KW  | 
Cooling mode | Overall dimension mm  | 
Weight Kg  | 
| 1 | DW-14/(0-0.2)-25 | Raw gas | 800 | 0-0.02 | 2.5 | 740 | 160 | Water cooled | 4800*3200*1915 | ~10000 | 
| 2 | VW-8/18 | Vinylidene fluoride gas | 418 | Atmospheric pressure | 1.8 | 980 | 75 | Water cooled | 3700*2000*1700 | ~4500 | 
| 3 | VWD-3.2/(0-0.2)-40 | Biogas | 230 | 0-0.2 | 4.0 | 740 | 45 | Water cooled | 6000*2500*2650 | ~8000 | 
| 4 | VW-9/6 | Ethyl chloride gas | 470 | Atmospheric pressure | 0.6 | 980 | 55 | Water cooled | 2800*1720*1700 | ~3500 | 
| 5 | DWF-12.4/(9-12)-14 | Carbon dioxide | 6400 | 0.9-1.2 | 1.4 | 740 | 185 | Air cooled | 6000*2700*2200 | ~10000 | 
| 6 | VWF-2.86/5-16 | Nitrogen gas | 895 | 0.5 | 1.6 | 740 | 55 | Air cooled | 3200*2200*1750 | ~3500 | 
| 7 | DW-2.4/(18-25)-50 | Raw gas | 2900 | 1.8-2.5 | 5.0 | 980 | 160 | Water cooled | 4300*3000*1540 | ~4500 | 
| 8 | VW-5.6/(0-6)-6 | Isobutylene gas | 1650 | 0-0.6 | 0.6 | 740 | 45 | Water cooled | 2900X1900X1600 | ~3500 | 
| 9 | VW-3.8/3.5 | Mixed gas | 200 | Atmospheric pressure | 0.35 | 980 | 18.5 | Water cooled | 2200*1945*1600 | ~2000 | 
| 10 | ZW-1.7/3.5 | Vinyl chloride gas | 100 | Atmospheric pressure | 0.35 | 740 | 15 | Water cooled | 2700X1600X2068 | ~2000 | 
| 11 | ZWF-0.96/5 | Hydrogen chloride gas | 55 | Atmospheric pressure | 0.5 | 740 | 11 | Air cooled | 2000*1500*2000 | ~1000 | 
| 12 | VW-0.85/(0-14)-40 | Refrigerant gas | 300 | 0-1.4 | 4.0 | 740 | 55 | Water cooled | 4500*2300*1780 | ~5500 | 
| 13 | DW-3.78/(8-13)-(16-24) | Ammonia gas | 2700 | 0.8-1.3 | 1.6-2.4 | 740 | 75 | Water cooled | 3200*2000*1700 | ~3500 | 
Certifications
After Sales Service
Related products
product-list-1.html
/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
.webp)
Can Gas Air Compressors Be Used in Construction Projects?
Gas air compressors are widely used in construction projects due to their portability, versatility, and ability to provide the necessary compressed air for various applications. They are an essential tool in the construction industry, enabling the efficient and effective operation of pneumatic tools and equipment. Here’s a detailed explanation of how gas air compressors are used in construction projects:
1. Powering Pneumatic Tools:
Gas air compressors are commonly used to power a wide range of pneumatic tools on construction sites. These tools include jackhammers, nail guns, impact wrenches, concrete breakers, air drills, sanders, grinders, and paint sprayers. The compressed air generated by the gas air compressor provides the necessary force and power for efficient operation of these tools, enabling tasks such as concrete demolition, fastening, surface preparation, and finishing.
2. Air Blow and Cleaning Operations:
In construction projects, there is often a need to clean debris, dust, and dirt from work areas, equipment, and surfaces. Gas air compressors are used to generate high-pressure air for air blow and cleaning operations. This helps maintain cleanliness, remove loose materials, and prepare surfaces for further work, such as painting or coating.
3. Operating Pneumatic Systems:
Gas air compressors are employed to operate various pneumatic systems in construction projects. These systems include pneumatic control devices, pneumatic cylinders, and pneumatic actuators. Compressed air from the gas air compressor is used to control the movement of equipment, such as gates, doors, and barriers, as well as to operate pneumatic lifts, hoists, and other lifting mechanisms.
4. Concrete Spraying and Shotcreting:
Gas air compressors are utilized in concrete spraying and shotcreting applications. Compressed air is used to propel the concrete mixture through a nozzle at high velocity, ensuring proper adhesion and distribution on surfaces. This technique is commonly employed in applications such as tunnel construction, slope stabilization, and repair of concrete structures.
5. Sandblasting and Surface Preparation:
In construction projects that require surface preparation, such as removing old paint, rust, or coatings, gas air compressors are often used in conjunction with sandblasting equipment. Compressed air powers the sandblasting process, propelling abrasive materials such as sand or grit onto the surface to achieve effective cleaning and preparation before applying new coatings or finishes.
6. Tire Inflation and Equipment Maintenance:
Gas air compressors are utilized for tire inflation and equipment maintenance on construction sites. They provide compressed air for inflating and maintaining proper tire pressure in construction vehicles and equipment. Additionally, gas air compressors are used for general equipment maintenance, such as cleaning, lubrication, and powering pneumatic tools for repair and maintenance tasks.
7. Portable and Remote Operations:
Gas air compressors are particularly beneficial in construction projects where electricity may not be readily available or feasible. Portable gas air compressors provide the flexibility to operate in remote locations, allowing construction crews to utilize pneumatic tools and equipment without relying on a fixed power source.
Gas air compressors are an integral part of construction projects, facilitating a wide range of tasks and enhancing productivity. Their ability to power pneumatic tools, operate pneumatic systems, and provide compressed air for various applications makes them essential equipment in the construction industry.
.webp)
How Do Gas Air Compressors Contribute to Energy Savings?
Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:
1. Efficient Power Source:
Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.
2. Reduced Electricity Consumption:
Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.
3. Demand-Sensitive Operation:
Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.
4. Energy Recovery:
Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.
5. Proper Sizing and System Design:
Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.
6. Regular Maintenance:
Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.
7. System Optimization:
For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.
In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.
.webp)
How Does a Gas Air Compressor Work?
A gas air compressor works by utilizing a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air can then be used for various applications. Here’s a detailed explanation of how a gas air compressor operates:
1. Gas Engine:
A gas air compressor is equipped with a gas engine as its power source. The gas engine is typically fueled by gasoline, diesel, natural gas, or propane. When the engine is started, the fuel is combusted within the engine’s cylinders, generating mechanical energy in the form of rotational motion.
2. Compressor Pump:
The gas engine drives the compressor pump through a mechanical linkage, such as a belt or direct coupling. The compressor pump is responsible for drawing in atmospheric air and compressing it to a higher pressure. There are different types of compressor pumps used in gas air compressors, including reciprocating, rotary screw, or centrifugal, each with its own operating principles.
3. Intake Stroke:
In a reciprocating compressor pump, the intake stroke begins when the piston moves downward within the cylinder. This creates a vacuum, causing the inlet valve to open and atmospheric air to be drawn into the cylinder. In rotary screw or centrifugal compressors, air is continuously drawn in through the intake port as the compressor operates.
4. Compression Stroke:
During the compression stroke in a reciprocating compressor, the piston moves upward, reducing the volume within the cylinder. This compression action causes the air to be compressed and its pressure to increase. In rotary screw compressors, two interlocking screws rotate, trapping and compressing the air between them. In centrifugal compressors, air is accelerated and compressed by high-speed rotating impellers.
5. Discharge Stroke:
Once the air is compressed, the discharge stroke begins in reciprocating compressors. The piston moves upward, further reducing the volume and forcing the compressed air out of the cylinder through the discharge valve. In rotary screw compressors, the compressed air is discharged through an outlet port as the interlocking screws continue to rotate. In centrifugal compressors, the high-pressure air is discharged from the impeller into the surrounding volute casing.
6. Pressure Regulation:
Gas air compressors often include pressure regulation mechanisms to control the output pressure of the compressed air. This can be achieved through pressure switches, regulators, or control systems that adjust the compressor’s operation based on the desired pressure setting. These mechanisms help maintain a consistent and controlled supply of compressed air for the specific application requirements.
7. Storage and Application:
The compressed air produced by the gas air compressor is typically stored in a receiver tank or used directly for applications. The receiver tank helps stabilize the pressure and provides a reservoir of compressed air for immediate use. From the receiver tank, the compressed air can be distributed through pipelines to pneumatic tools, machinery, or other devices that require the compressed air for operation.
Overall, a gas air compressor operates by using a gas engine to power a compressor pump, which draws in air and compresses it to a higher pressure. The compressed air is then regulated and used for various applications, providing a reliable source of power for pneumatic tools, machinery, and other equipment.


editor by lmc 2024-11-22
China wholesaler 250bar (25MPa) Reciprocating Piston Natural Gas Booster Compressor for CNG Filling Station best air compressor
Product Description
Company Profile
The company’s main products include desulfurization, dehydrocarbons, separation, compression, filling, storage and transportation equipment for natural gas extraction in oil and gas fields; complete sets of wellhead gas recovery equipment; complete sets of vented natural gas recovery equipment; complete sets of coalbed methane, shale gas and biogas development and utilization equipment Equipment; CNG filling station complete equipment; LNG complete equipment; BOG compressor; large-displacement screw-piston compound compressor; membrane nitrogen and adsorption nitrogen production complete equipment; in addition, hydrogen, oxygen, nitrogen, argon, carbon monoxide gas, carbon dioxide gas, coal gas, hydrogen sulfide gas, propylene gas, ethylene gas, methyl chloride gas, trifluoropropane gas, liquefied petroleum gas and other special gases, low-temperature gases and air compressors. Among them, the W and V series non-lubricated compressors produced by introducing advanced foreign technology have reached the international advanced level.
Product Description
The company currently has 10 series of leading products and hundreds of specifications. Its volumetric flow rate: 0.05~200m3/min. Pressure range: low pressure type 0~1.6MPa, medium pressure
Type 1.6~8.0MPa, high pressure type 8.0~50.0MPa. Lubrication methods are divided into 3 types: oil, oil-free and completely oil-free. The structural types include Z, W, V, D, M and H types. There are 3 cooling methods: air cooling, water cooling, and mixed cooling. In addition to providing users with customized products, we can also carry out personalized design and manufacturing according to user needs.
CNG STHangZhouRD STATION COMPRESSOR
CNG standard stations are built where natural gas pipelines pass through.
Gas is taken directly from the natural gas pipeline. Natural gas undergoes desulfurization, pressure regulation, metering, and
Filtration, dehydration and other processes enter the compressor unit, and then compress, cool and purify
Then the pressure is increased to 25Mpa, and finally the high-pressure trailer is supplied to the high-pressure trailer through the air filling column.
Fill up the gas, and also fill up the car through the gas vending machine. Our company can provide overall
Solutions and turnkey projects.
Equipment composition: air inlet filter pressure regulating metering device, desulfurization tower, low-pressure dehydration device, piston compressor, sequence control panel, gas storage bottle group, adding
Gas machines, gas filling columns, CNG trailers, gas alarm devices and other equipment.
Covered area: about 2000~4000m²
Optimal transportation radius: 150km
Suitable scale: ≥40000Nm²/d
Equipment installation time: about 30 days.
 
| NO. | TYPE | Intake pressure MPa  | 
CAPACITY Nm3/h  | 
MOTOR KW  | 
COOLING | WEIGHT(TONS) | SIZE mm  | 
|||||
| 1 | W-5.6/0.5-250 | 0.05 | 500 | 160 | WATER COOLING | 9 | 5000×2300×2200 | |||||
| 2 | W-3.6/1-250 | 0.1 | 435 | 110 | WATER/MIX COOLING | 6 | 2400×2220×2150 | |||||
| 3 | W-4.75/1-250 | 0.1 | 570 | 132 | WATER/MIX COOLING | 6 | 2400×2220×2150 | |||||
| 4 | W-7.5/1-250 | 0.1 | 900 | 270 | WATER/MIX COOLING | 17 | 8500×2260×2200 | |||||
| 5 | W-4.5/1.4-250 | 0.14 | 650 | 160 | WATER/MIX COOLING | 7 | 3820×2270×2150 | |||||
| 6 | W-4.7/2-250 | 0.2 | 850 | 185 | WATER/MIX COOLING | 7 | 3820×2270×2150 | |||||
| 7 | WF-3.6/(1.5~2.5)-250 0.15~0.25 | 0.15~0.25 | 540~750 | 160 | AIR COOLING | 14 | 6200×2190×2080 | |||||
| 8 | W-3.6/(1.5~3)-250 | 0.15~0.3 | 540~860 | 185 | WATER/MIX COOLING | 7 | 4000×2270×2150 | |||||
| 9 | V-3.2/(3-5)-250 | 0.3~0.5 | 760-1150 | 220 | AIR COOLING | 14 | 6300×2525×2500 | |||||
| 10 | VF-3.2/(3~5)-250 | 0.3~0.5 | 770~1150 | 220 | WATER/MIX COOLING | 14 | 6300×2500×2500 | |||||
| 11 | W-1.5/8-250 | 0.8 | 810 | 132 | WATER/MIX COOLING | 8 | 4000×2300×2000 | |||||
| 12 | VF-2/(10~16)-250 | 1.0~1.6 | 1320~2000 | 280 | AIR COOLING | 10 | 5600×2500×2300 | |||||
| 13 | D-5/(2~4)-250 | 0.2~0.4 | 900~1500 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | |||||
| 14 | D-4.2/(3~6)-250 | 0.3~0.6 | 1000-1760 | 280 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | |||||
| 15 | D-3.6/(4~7)-250 | 0.4~0.7 | 1050~1730 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | |||||
| 16 | D-2.6/(7~12)-250 | 0.7~1.2 | 1250~2000 | 280 | WATER/AIR/MIX COOLING | 20 | 5000×3500×2500 | |||||
| 17 | VF-0.76/(7~13)-250 | 0.7~1.3 | 365~640 | 100 | WATER/AIR/MIX COOLING | 8 | 6000×2200×2230 | |||||
 CNG MOTHER STATION COMPRESSOR
The CNG mother station is built in a place where natural gas pipelines pass through.
Take the gas directly from the gas pipeline. Natural gas undergoes desulfurization, pressure regulation, metering, filtration,
Dehydration and other processes enter the compressor unit, and then are compressed, cooled and purified to make it
The pressure is increased to 25Mpa, and finally the high-pressure trailer is filled with air through the air filling column.
Sometimes, cars can also be refueled through gas vending machines. Our company provides turnkey projects.
Equipment composition: air inlet filter pressure regulating metering device, desulfurization tower, low pressure desulfurization tower
Water device, piston compressor, sequence control panel, gas storage bottle group, gas filling
machine, gas filling column, CNG trailer, gas alarm device and other equipment.
Covered area: about 2000~4000m²
Optimal transportation radius: 150km
Suitable scale: ≥40000Nm²/d
Equipment installation time: about 30 days. 
| NO. | TYPE | Intake pressure MPa  | 
CAPACITY Nm3/h  | 
MOTOR KW  | 
COOLING | WEIGHT(TONS) | SIZE mm  | 
||||
| 1 | D-5/(2-4)-250 | 0.2~0.4 | 900~1500 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 2 | VF-3.2/(3~5)-250 | 0.3~0.5 | 770~1150 | 220 | AIR COOLING | 14 | 6300×2500×2500 | ||||
| 3 | D-4.2/(3-6)-250 | 03~0.6 | 1000-1760 | 280 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 4 | D-3.6/(4~7)-250 | 0.4~0.7 | 1050~1730 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 5 | D-2.6/(7~12)-250 | 0.7~1.2 | 1250~2000 | 280 | WATER/MIX COOLING | 20 | 5000×3500×2500 | ||||
| 6 | VF-0.76/(7~13)-250 | 0.7~0.3 | 365~640 | 100 | MIX COOLING | 8 | 6000×2200×2230 | ||||
| 7 | D-2.8/(8-12)-250 | 0.8~1.2 | 1350-2150 | 280 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 8 | V-2/(9-14)-250 | 0.9~1.4 | 1200-1800 | 280 | WATER/AIR/MIX COOLING | 12 | 6500×2525×2300 | ||||
| 9 | VFD-2/14-210 | 1.4 | 1800 | 280 | AIR COOLING | 15 | 10000×4000×3000 | ||||
| 10 | D-2.5/(12-14)-250 | 1.2~1.4 | 1950-2250 | 18 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 11 | VF-2/(10~16)-250 | 1.0~1.6 | 1320~2000 | 280 | AIR COOLING | 10 | 5600×2500×2300 | ||||
| 12 | D-2.8/(10~16)-250 | 1.0~1.6 | 1800-2850 | 355 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 13 | V-1.43/(16~20)-250 | 1.6~2.0 | 1460~1800 | 220 | WATER/AIR/MIX COOLING | 11 | 6000×2500×2250 | ||||
| 14 | D-2.4/(16-20)-250 | 1.6~2.0 | 2450-3000 | 355 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 15 | D-2.4/(16-23)-210 | 1.6~2.3 | 2450-3450 | 355 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 16 | V-1.8/(18-23)-210 | 1.8~2.3 | 2000-2590 | 280 | WATER/AIR/MIX COOLING | 12 | 6500×2525×2200 | ||||
| 17 | D-1.45/(20-35)-250 | 2.0~3.5 | 1830-3100 | 280 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 18 | V-0.8/(19~35)-250 | 1.9~3.5 | 960~1720 | 160 | WATER/AIR/MIX COOLING | 13 | 6500×2525×2200 | ||||
| 19 | VF-1/(25~40)-250 | 2.5~4.0 | 1560~2700 | 220 | AIR COOLING | 13.5 | 4250×2525×2100 | ||||
| 20 | D-1.45/(40~60)-250 | 4.0~6.0 | 3600~5300 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2100 | ||||
| 21 | D-1.3/(50-70)-250 | 5.0~7.0 | 3970~5530 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2100 | ||||
| 22 | D-1.3/(60-70)-250 | 6.0~7.0 | 4758~5530 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2100 | ||||
| 23 | D-1.2/(40-80)-250 | 4.0~8.0 | 4758~5530 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2100 | ||||
| 24 | D-3.5/(7-10)-250 | 0.7~1 | 1680~2240 | 550 | AIR COOLING | 28 | 6600×4300×2500 | ||||
 CNG SUBSTATION COMPRESSOR
CNG substations are built in places where no natural gas pipelines pass through.
The CNG trailer transfers the gas from the mother station to the station and unloads the gas through the gas unloading column.
Gas machines refill cars.
Equipment composition: gas unloading column, sub-station compressor, sequence control panel, storage
Gas cylinder sets, gas dispensers, gas alarm devices, CNG trailers and other equipment.
Covered area: about 1000~1500m²
Way of working:
After natural balance, the direct intake air is compressed and supercharged, and the average working capacity is
More than 1000 square meters
Compressor exhaust volume changes range as trailer pressure drops:
1800-400Nm²/h 
| NO. | TYPE | Intake pressure MPa  | 
CAPACITY Nm3/h  | 
MOTOR KW  | 
COOLING | WEIGHT(TONS) | SIZE mm  | 
||||
| 1 | VF-0.32/(30~200)-250 | 3~20 | 1500 | 75 | AIR | 5.5 | 5538×2134×1680 | ||||
| 2 | VFD-0.32/(30~200)-250 | 3~20 | 1500 | 75 | AIR | 9.65 | 5538×2438×2438 | ||||
| 3 | DFD-0.32/(30-200)-250 | 3~20 | 1500 | 75 | AIR | 8.5 | 4400×2610×2591 | ||||
| 4 | VFD-0.32/(20~200)-250 | 2~20 | 1500 | 75 | AIR | 9.65 | 5538×2438×2438 | ||||
| 5 | VF-0.26/(30-200)-250 | 3~20 | 1000 | 55 | AIR | 5.5 | 5538×2350×2000 | ||||
| 6 | VFD-0.26/(30-200)-250 | 3~20 | 1000 | 55 | AIR | 9.5 | 5538×2350×2438 | ||||
| 7 | ZFD-0.1/(30~200)-250 | 3~20 | 650 | 37 | AIR | 8.5 | 7000×2700×2700 | ||||
| 8 | ZFD-0.24/(30-200)-250 | 3~20 | 1400 | 37×2 | AIR | 8.5 | 7000×2700×2700 | ||||
| 9 | KR-1500/(20-200)-250 | 2~20 | 1500 | 30×2 | AIR | 10 | 5500×2500×2950 | ||||
| 10 | KR-2000/(20-200)-250 | 2~20 | 2000 | 37×2 | AIR | 10 | 5500×2500×2950 | ||||
| 11 | DFD-3[0.28]/(2-4)[25-200]-250 | 0.2~0.4
 2.5~20  | 
540-900 (STANARD STATION AND SUBSTATION) 1300  | 
160
 75  | 
AIR | 12.5 | 4050×3450×2100 | ||||
Detailed Photos
After Sales Service
In addition to the high-quality performance of our products, we also attach great importance to providing customers with comprehensive services. We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
 
Training plan
Technical training is divided into 2 parts: company training and on-site training.
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
 
Packaging & Shipping
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 12 Month | 
|---|---|
| Warranty: | 12 Month | 
| Lubrication Style: | Lubricated | 
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| 
                                        Shipping Cost:
 Estimated freight per unit.                                                       | 
                                         about shipping cost and estimated delivery time.  | 
|---|
| Payment Method: | 
                                    
 
 
 
 
 
 
 
  | 
|---|---|
| 
                                     Initial Payment Full Payment  | 
| Currency: | US$ | 
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. | 
|---|
.webp)
What Is the Typical Lifespan of a Gas Air Compressor?
The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:
1. Quality of the Compressor:
The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.
2. Usage Patterns:
The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.
3. Maintenance Practices:
Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.
4. Environmental Conditions:
The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.
5. Proper Installation and Operation:
Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.
Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.
Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.
.webp)
Can Gas Air Compressors Be Used for Sandblasting?
Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:
1. Compressed Air Requirement:
Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.
2. Portable and Versatile:
Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.
3. Pressure and Volume:
When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.
4. Compressor Size and Capacity:
The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.
5. Maintenance Considerations:
Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.
6. Safety Precautions:
When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.
In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.
.webp)
How Do You Choose the Right Size Gas Air Compressor for Your Needs?
Choosing the right size gas air compressor is crucial to ensure optimal performance and efficiency for your specific needs. Selecting a compressor that is too small may result in insufficient airflow or pressure, while choosing one that is too large can lead to unnecessary energy consumption and higher costs. Here’s a detailed explanation of the factors to consider when choosing the right size gas air compressor:
1. Required Airflow:
Determine the airflow requirements of your applications. Consider the tools, equipment, or processes that will be powered by the compressor and their respective airflow demands. The required airflow is typically measured in cubic feet per minute (CFM). Determine the total CFM required, taking into account any simultaneous or intermittent tool usage.
2. Operating Pressure:
Identify the operating pressure required for your applications. Different tools and systems have specific pressure requirements, measured in pounds per square inch (PSI). Ensure that the compressor you choose can deliver the required pressure consistently.
3. Duty Cycle:
Consider the duty cycle, which refers to the amount of time the compressor will be in operation within a given period. Some applications may require continuous operation, while others involve intermittent or occasional use. Take into account the duty cycle to ensure that the compressor can handle the expected workload without overheating or experiencing excessive wear.
4. Tank Size:
The tank size of a gas air compressor determines its ability to store compressed air and provide a steady supply. A larger tank can help accommodate fluctuations in demand and reduce the frequency of the compressor cycling on and off. Consider the required storage capacity based on the specific applications and the desired balance between continuous operation and storage capacity.
5. Power Source:
Gas air compressors can be powered by different fuels, such as gasoline, diesel, natural gas, or propane. Consider the availability and cost of the fuel options in your location, as well as the specific requirements of your applications. Choose a compressor that is compatible with a power source that suits your needs.
6. Portability:
Determine if portability is a requirement for your applications. If you need to move the compressor to different job sites or locations, consider a portable model with features like wheels, handles, or a compact design that facilitates easy transportation.
7. Noise Level:
If noise is a concern in your working environment, consider the noise level of the compressor. Gas air compressors can vary in their noise output, and certain models may have noise-reducing features or insulation to minimize sound emissions.
8. Manufacturer Recommendations:
Consult the manufacturer’s recommendations and guidelines for selecting the appropriate compressor size for your specific needs. Manufacturers often provide guidelines based on the anticipated applications, airflow requirements, and other factors to help you make an informed decision.
By considering these factors and carefully assessing your specific requirements, you can choose the right size gas air compressor that meets your airflow, pressure, duty cycle, and other operational needs. It’s advisable to consult with industry professionals or compressor experts for guidance, especially for complex or specialized applications.


editor by CX 2024-02-25