Product Description
Company Profile
The company’s main products include desulfurization, dehydrocarbons, separation, compression, filling, storage and transportation equipment for natural gas extraction in oil and gas fields; complete sets of wellhead gas recovery equipment; complete sets of vented natural gas recovery equipment; complete sets of coalbed methane, shale gas and biogas development and utilization equipment Equipment; CNG filling station complete equipment; LNG complete equipment; BOG compressor; large-displacement screw-piston compound compressor; membrane nitrogen and adsorption nitrogen production complete equipment; in addition, hydrogen, oxygen, nitrogen, argon, carbon monoxide gas, carbon dioxide gas, coal gas, hydrogen sulfide gas, propylene gas, ethylene gas, methyl chloride gas, trifluoropropane gas, liquefied petroleum gas and other special gases, low-temperature gases and air compressors. Among them, the W and V series non-lubricated compressors produced by introducing advanced foreign technology have reached the international advanced level.
Product Description
The company currently has 10 series of leading products and hundreds of specifications. Its volumetric flow rate: 0.05~200m3/min. Pressure range: low pressure type 0~1.6MPa, medium pressure
Type 1.6~8.0MPa, high pressure type 8.0~50.0MPa. Lubrication methods are divided into 3 types: oil, oil-free and completely oil-free. The structural types include Z, W, V, D, M and H types. There are 3 cooling methods: air cooling, water cooling, and mixed cooling. In addition to providing users with customized products, we can also carry out personalized design and manufacturing according to user needs.
CNG STHangZhouRD STATION COMPRESSOR
CNG standard stations are built where natural gas pipelines pass through.
Gas is taken directly from the natural gas pipeline. Natural gas undergoes desulfurization, pressure regulation, metering, and
Filtration, dehydration and other processes enter the compressor unit, and then compress, cool and purify
Then the pressure is increased to 25Mpa, and finally the high-pressure trailer is supplied to the high-pressure trailer through the air filling column.
Fill up the gas, and also fill up the car through the gas vending machine. Our company can provide overall
Solutions and turnkey projects.
Equipment composition: air inlet filter pressure regulating metering device, desulfurization tower, low-pressure dehydration device, piston compressor, sequence control panel, gas storage bottle group, adding
Gas machines, gas filling columns, CNG trailers, gas alarm devices and other equipment.
Covered area: about 2000~4000m²
Optimal transportation radius: 150km
Suitable scale: ≥40000Nm²/d
Equipment installation time: about 30 days.
 
| NO. | TYPE | Intake pressure MPa  | 
CAPACITY Nm3/h  | 
MOTOR KW  | 
COOLING | WEIGHT(TONS) | SIZE mm  | 
|||||
| 1 | W-5.6/0.5-250 | 0.05 | 500 | 160 | WATER COOLING | 9 | 5000×2300×2200 | |||||
| 2 | W-3.6/1-250 | 0.1 | 435 | 110 | WATER/MIX COOLING | 6 | 2400×2220×2150 | |||||
| 3 | W-4.75/1-250 | 0.1 | 570 | 132 | WATER/MIX COOLING | 6 | 2400×2220×2150 | |||||
| 4 | W-7.5/1-250 | 0.1 | 900 | 270 | WATER/MIX COOLING | 17 | 8500×2260×2200 | |||||
| 5 | W-4.5/1.4-250 | 0.14 | 650 | 160 | WATER/MIX COOLING | 7 | 3820×2270×2150 | |||||
| 6 | W-4.7/2-250 | 0.2 | 850 | 185 | WATER/MIX COOLING | 7 | 3820×2270×2150 | |||||
| 7 | WF-3.6/(1.5~2.5)-250 0.15~0.25 | 0.15~0.25 | 540~750 | 160 | AIR COOLING | 14 | 6200×2190×2080 | |||||
| 8 | W-3.6/(1.5~3)-250 | 0.15~0.3 | 540~860 | 185 | WATER/MIX COOLING | 7 | 4000×2270×2150 | |||||
| 9 | V-3.2/(3-5)-250 | 0.3~0.5 | 760-1150 | 220 | AIR COOLING | 14 | 6300×2525×2500 | |||||
| 10 | VF-3.2/(3~5)-250 | 0.3~0.5 | 770~1150 | 220 | WATER/MIX COOLING | 14 | 6300×2500×2500 | |||||
| 11 | W-1.5/8-250 | 0.8 | 810 | 132 | WATER/MIX COOLING | 8 | 4000×2300×2000 | |||||
| 12 | VF-2/(10~16)-250 | 1.0~1.6 | 1320~2000 | 280 | AIR COOLING | 10 | 5600×2500×2300 | |||||
| 13 | D-5/(2~4)-250 | 0.2~0.4 | 900~1500 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | |||||
| 14 | D-4.2/(3~6)-250 | 0.3~0.6 | 1000-1760 | 280 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | |||||
| 15 | D-3.6/(4~7)-250 | 0.4~0.7 | 1050~1730 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | |||||
| 16 | D-2.6/(7~12)-250 | 0.7~1.2 | 1250~2000 | 280 | WATER/AIR/MIX COOLING | 20 | 5000×3500×2500 | |||||
| 17 | VF-0.76/(7~13)-250 | 0.7~1.3 | 365~640 | 100 | WATER/AIR/MIX COOLING | 8 | 6000×2200×2230 | |||||
 CNG MOTHER STATION COMPRESSOR
The CNG mother station is built in a place where natural gas pipelines pass through.
Take the gas directly from the gas pipeline. Natural gas undergoes desulfurization, pressure regulation, metering, filtration,
Dehydration and other processes enter the compressor unit, and then are compressed, cooled and purified to make it
The pressure is increased to 25Mpa, and finally the high-pressure trailer is filled with air through the air filling column.
Sometimes, cars can also be refueled through gas vending machines. Our company provides turnkey projects.
Equipment composition: air inlet filter pressure regulating metering device, desulfurization tower, low pressure desulfurization tower
Water device, piston compressor, sequence control panel, gas storage bottle group, gas filling
machine, gas filling column, CNG trailer, gas alarm device and other equipment.
Covered area: about 2000~4000m²
Optimal transportation radius: 150km
Suitable scale: ≥40000Nm²/d
Equipment installation time: about 30 days. 
| NO. | TYPE | Intake pressure MPa  | 
CAPACITY Nm3/h  | 
MOTOR KW  | 
COOLING | WEIGHT(TONS) | SIZE mm  | 
||||
| 1 | D-5/(2-4)-250 | 0.2~0.4 | 900~1500 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 2 | VF-3.2/(3~5)-250 | 0.3~0.5 | 770~1150 | 220 | AIR COOLING | 14 | 6300×2500×2500 | ||||
| 3 | D-4.2/(3-6)-250 | 03~0.6 | 1000-1760 | 280 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 4 | D-3.6/(4~7)-250 | 0.4~0.7 | 1050~1730 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 5 | D-2.6/(7~12)-250 | 0.7~1.2 | 1250~2000 | 280 | WATER/MIX COOLING | 20 | 5000×3500×2500 | ||||
| 6 | VF-0.76/(7~13)-250 | 0.7~0.3 | 365~640 | 100 | MIX COOLING | 8 | 6000×2200×2230 | ||||
| 7 | D-2.8/(8-12)-250 | 0.8~1.2 | 1350-2150 | 280 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 8 | V-2/(9-14)-250 | 0.9~1.4 | 1200-1800 | 280 | WATER/AIR/MIX COOLING | 12 | 6500×2525×2300 | ||||
| 9 | VFD-2/14-210 | 1.4 | 1800 | 280 | AIR COOLING | 15 | 10000×4000×3000 | ||||
| 10 | D-2.5/(12-14)-250 | 1.2~1.4 | 1950-2250 | 18 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 11 | VF-2/(10~16)-250 | 1.0~1.6 | 1320~2000 | 280 | AIR COOLING | 10 | 5600×2500×2300 | ||||
| 12 | D-2.8/(10~16)-250 | 1.0~1.6 | 1800-2850 | 355 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 13 | V-1.43/(16~20)-250 | 1.6~2.0 | 1460~1800 | 220 | WATER/AIR/MIX COOLING | 11 | 6000×2500×2250 | ||||
| 14 | D-2.4/(16-20)-250 | 1.6~2.0 | 2450-3000 | 355 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 15 | D-2.4/(16-23)-210 | 1.6~2.3 | 2450-3450 | 355 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 16 | V-1.8/(18-23)-210 | 1.8~2.3 | 2000-2590 | 280 | WATER/AIR/MIX COOLING | 12 | 6500×2525×2200 | ||||
| 17 | D-1.45/(20-35)-250 | 2.0~3.5 | 1830-3100 | 280 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2500 | ||||
| 18 | V-0.8/(19~35)-250 | 1.9~3.5 | 960~1720 | 160 | WATER/AIR/MIX COOLING | 13 | 6500×2525×2200 | ||||
| 19 | VF-1/(25~40)-250 | 2.5~4.0 | 1560~2700 | 220 | AIR COOLING | 13.5 | 4250×2525×2100 | ||||
| 20 | D-1.45/(40~60)-250 | 4.0~6.0 | 3600~5300 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2100 | ||||
| 21 | D-1.3/(50-70)-250 | 5.0~7.0 | 3970~5530 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2100 | ||||
| 22 | D-1.3/(60-70)-250 | 6.0~7.0 | 4758~5530 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2100 | ||||
| 23 | D-1.2/(40-80)-250 | 4.0~8.0 | 4758~5530 | 315 | WATER/AIR/MIX COOLING | 23 | 5000×3500×2100 | ||||
| 24 | D-3.5/(7-10)-250 | 0.7~1 | 1680~2240 | 550 | AIR COOLING | 28 | 6600×4300×2500 | ||||
 CNG SUBSTATION COMPRESSOR
CNG substations are built in places where no natural gas pipelines pass through.
The CNG trailer transfers the gas from the mother station to the station and unloads the gas through the gas unloading column.
Gas machines refill cars.
Equipment composition: gas unloading column, sub-station compressor, sequence control panel, storage
Gas cylinder sets, gas dispensers, gas alarm devices, CNG trailers and other equipment.
Covered area: about 1000~1500m²
Way of working:
After natural balance, the direct intake air is compressed and supercharged, and the average working capacity is
More than 1000 square meters
Compressor exhaust volume changes range as trailer pressure drops:
1800-400Nm²/h 
| NO. | TYPE | Intake pressure MPa  | 
CAPACITY Nm3/h  | 
MOTOR KW  | 
COOLING | WEIGHT(TONS) | SIZE mm  | 
||||
| 1 | VF-0.32/(30~200)-250 | 3~20 | 1500 | 75 | AIR | 5.5 | 5538×2134×1680 | ||||
| 2 | VFD-0.32/(30~200)-250 | 3~20 | 1500 | 75 | AIR | 9.65 | 5538×2438×2438 | ||||
| 3 | DFD-0.32/(30-200)-250 | 3~20 | 1500 | 75 | AIR | 8.5 | 4400×2610×2591 | ||||
| 4 | VFD-0.32/(20~200)-250 | 2~20 | 1500 | 75 | AIR | 9.65 | 5538×2438×2438 | ||||
| 5 | VF-0.26/(30-200)-250 | 3~20 | 1000 | 55 | AIR | 5.5 | 5538×2350×2000 | ||||
| 6 | VFD-0.26/(30-200)-250 | 3~20 | 1000 | 55 | AIR | 9.5 | 5538×2350×2438 | ||||
| 7 | ZFD-0.1/(30~200)-250 | 3~20 | 650 | 37 | AIR | 8.5 | 7000×2700×2700 | ||||
| 8 | ZFD-0.24/(30-200)-250 | 3~20 | 1400 | 37×2 | AIR | 8.5 | 7000×2700×2700 | ||||
| 9 | KR-1500/(20-200)-250 | 2~20 | 1500 | 30×2 | AIR | 10 | 5500×2500×2950 | ||||
| 10 | KR-2000/(20-200)-250 | 2~20 | 2000 | 37×2 | AIR | 10 | 5500×2500×2950 | ||||
| 11 | DFD-3[0.28]/(2-4)[25-200]-250 | 0.2~0.4
 2.5~20  | 
540-900 (STANARD STATION AND SUBSTATION) 1300  | 
160
 75  | 
AIR | 12.5 | 4050×3450×2100 | ||||
Detailed Photos
After Sales Service
In addition to the high-quality performance of our products, we also attach great importance to providing customers with comprehensive services. We have an independent service operation and maintenance team, providing customers with various support and services, including technical support, debugging services, spare parts supply, renovation and upgrading, and major maintenance. We always adhere to the principle of customer-centrism, ensuring the safe and stable operation of customer equipment. Our service team is committed to providing reliable support for customers’ operations 24/7.
 
Training plan
Technical training is divided into 2 parts: company training and on-site training.
1)Company training
Before the unit is delivered, that is during the unit assembly period, users will be provided with a one-week on-site training by the company. Provide local accommodation and transportation facilities, and provide free venues, teaching materials, equipment, tools, etc. required for training. The company training content is as follows:
The working principle, structure and technical performance of the unit.
Unit assembly and adjustment, unit testing.
Operation of the unit, remote/local operation, manual/automatic operation, daily operation and management, familiar with the structure of each system of the unit.
Routine maintenance and upkeep of the unit, and precautions for operation and maintenance.
Analysis and troubleshooting of common faults, and emergency handling methods.
2) On-site training
During the installation and trial operation of the unit, on-site training will be conducted to teach the principles, structure, operation, maintenance, troubleshooting of common faults and other knowledge of the unit, so as to further become familiar with the various systems of the unit, so that the purchaser can independently and correctly operate the unit. Operation, maintenance and management.
 
Packaging & Shipping
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| After-sales Service: | 12 Month | 
|---|---|
| Warranty: | 12 Month | 
| Lubrication Style: | Lubricated | 
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| 
                                        Shipping Cost:
 Estimated freight per unit.                                                       | 
                                         about shipping cost and estimated delivery time.  | 
|---|
| Payment Method: | 
                                    
 
 
 
 
 
 
 
  | 
|---|---|
| 
                                     Initial Payment Full Payment  | 
| Currency: | US$ | 
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. | 
|---|
.webp)
What Is the Fuel Efficiency of Gas Air Compressors?
The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:
1. Engine Design and Size:
The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.
2. Load Capacity and Usage Patterns:
The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.
3. Maintenance and Tuning:
Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.
4. Operating Conditions:
The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.
5. Fuel Type:
The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.
6. Operator Skills and Practices:
The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.
It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.
Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.
.webp)
What Is the Role of Air Receivers in Gas Air Compressor Systems?
Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:
1. Storage and Stabilization:
The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.
By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.
2. Pressure Regulation:
Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.
Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.
3. Condensate Separation:
During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.
4. Energy Efficiency:
Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.
The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.
5. Air Quality Improvement:
Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.
In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.
.webp)
What Are the Advantages of Using a Gas Air Compressor Over an Electric One?
Using a gas air compressor offers several advantages over an electric air compressor. Gas-powered compressors provide unique benefits in terms of mobility, versatility, power, and convenience. Here’s a detailed explanation of the advantages of using a gas air compressor:
1. Portability and Mobility:
Gas air compressors are typically more portable and mobile compared to electric compressors. They often feature handles, wheels, or trailers, allowing for easy transportation to different locations. This portability is especially advantageous in situations where compressed air is needed at remote job sites, outdoor events, or areas without access to electricity. Gas air compressors can be easily moved and positioned where they are required.
2. Independence from Electricity:
One of the primary advantages of gas air compressors is their independence from electricity. They are powered by gas engines, which means they do not rely on a direct connection to the electrical grid. This makes them suitable for use in areas where electrical power is limited, unreliable, or unavailable. Gas air compressors offer a reliable source of compressed air even in remote locations or during power outages.
3. Versatility in Fuel Options:
Gas air compressors provide versatility in terms of fuel options. They can be powered by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This flexibility allows users to choose the most readily available or cost-effective fuel source based on their specific requirements. It also makes gas compressors adaptable to different environments and fuel availability in various regions.
4. Higher Power Output:
Gas air compressors typically offer higher power output compared to electric compressors. Gas engines can generate more horsepower, allowing gas compressors to deliver greater air pressure and volume. This higher power output is beneficial when operating pneumatic tools or equipment that require a significant amount of compressed air, such as jackhammers, sandblasters, or heavy-duty impact wrenches.
5. Continuous Operation:
Gas air compressors can provide continuous operation without the need for frequent breaks or cooldown periods. Electric compressors may overheat with prolonged use, requiring intermittent rest periods to cool down. Gas compressors, on the other hand, can operate continuously for longer durations without the risk of overheating. This continuous operation capability is particularly advantageous in demanding applications or situations that require extended periods of compressed air usage.
6. Quick Startup and Response:
Gas air compressors offer quick startup and response times. They can be started instantly by simply pulling a cord or pressing a button, whereas electric compressors may require time to power up and reach optimal operating conditions. Gas compressors provide immediate access to compressed air, allowing for efficient and prompt task completion.
7. Durability and Resistance to Voltage Fluctuations:
Gas air compressors are generally more durable and resistant to voltage fluctuations compared to electric compressors. Electric compressors can be affected by voltage drops or surges, which may impact their performance or cause damage. Gas compressors, however, are less susceptible to voltage-related issues, making them reliable in environments where voltage fluctuations are common.
8. Lower Energy Costs:
Gas air compressors can offer lower energy costs compared to electric compressors, depending on the price of the fuel being used. Gasoline or diesel fuel, for example, may be more cost-effective than electricity in certain regions or applications. This cost advantage can result in significant savings over time, especially for high-demand compressed air operations.
Overall, the advantages of using a gas air compressor over an electric one include portability, independence from electricity, fuel versatility, higher power output, continuous operation capability, quick startup and response times, durability, resistance to voltage fluctuations, and potentially lower energy costs. These advantages make gas air compressors a preferred choice in various industries, remote locations, and applications where mobility, power, and reliability are crucial.


editor by CX 2024-01-15