China Professional 99.999%Purity High Pressure Hydrogen Air Diaphragm Compressor for Electronics with Hot selling

Product Description

100% OIL FREE ZERO LEAKAGE HYDROGEN DIAPHRAGM COMPRESSOR

Product Description

The hydrogen diaphragm compressor booster is a special structure of the volume-type compressor with high compression ratio, good leak tightness, compressed gas without lubricating oil and other CHINAMFG impurities contaminated features.

WOBO diaphragm compressors consist of 4 types that are Z type, V type, L type and D type. The exhaust pressure ranges from 1.3 to 49Mpa. The products are widely used in the industries of national defense, scientificresearch, petrochemical, nuclear power, parmaceutical, food-stuff and gas separation.

Oi-free100%purity Hydrogen Diaphragm Compressor Structure

Product Parameters

Compressor Model CMP-22(1.5-2.2)H2 CMP-45(1.5-2.2)H2 CMP-22(1.8-2.2)H2
Dimensions (mm) 6500x2800x2500 4500x2800x2500 4500x2800x2500
Application Range Hydrogen Refueling Main Station Hydrogen Production and Refueling Integrated Station Hydrogen Refueling Main Station
Compressed Medium High-Purity Hydrogen Gas High-Purity Hydrogen Gas High-Purity Hydrogen Gas
Explosion Protection Level Ex de mb px II CT4 Ex de mb px II CT4 Ex de mb px II CT4
Number of Compression Stages Two-stage or Three-stage Three-stage Two-stage
Number of Compression Systems Dual System Dual System Single System
Inlet Pressure (Mpa) 1.5~2.2 1.5~2.2 1.8~2.2
Inlet Temperature (ºC) <45 <45 <45
Maximum Discharge Pressure (MPa) 22MPa 45 22
Discharge Temperature (after cooling) (ºC) ≤35 ≤35 ≤35
Design Flow Rate (Nm3/h) ≥1000 (Inlet 2MPa, Outlet 20MPa) ≥500 (Inlet 1.6MPa, Outlet 45MPa) ≥1000 (Inlet 2.0MPa, Outlet 20MPa)
Main Motor Power (KW) 75×2 110 132
Total Power (KW) 160 120 142
Installation Method Skid-mounted Skid-mounted Skid-mounted
For more information, please contact us.

Technical Principle

Diaphragm compressor. A diaphragm compressor is a variant of the classic reciprocating compressor with backup and piston rings and rod seal. The compression of gas occurs by means of a flexible membrane, instead of an intake element. The back and forth moving membrane is driven by a rod and a crankshaft mechanism.

Structure and Working Cycle of Diaphragm Compressor

Equipment Advantages

WD Type  Diaphragm Compressor
1. High Compression Efficiency.
2. Compression of High-Purity Gases.
3. Lower Maintenance Rate.
4. Well-Performing Oil Pump System.
5. Diaphragm and Oil Pressure Alarms.
6. Enhanced Exterior Aesthetics.
7. Favorable Cooling Conditions for the Compressor.
8. Compact and Reasonably Designed Overall Structure.
WL Type Diaphragm Compressor
1. The overall equipment design is well-thought-out, ensuring smooth and reliable operation, minimal vibration, low noise, and facilitating practical operational maintenance.
2. The cylinder head components utilize a structure without mating oil plates, reducing the complexity of machining processes.
3. The adoption of a new thin-film chamber significantly enhances the diaphragm’s lifespan.
4. Various pipeline designs of the machinery are effective, well-arranged, and visually appealing.
WV Type Diaphragm Compressor
1. The overall design of the machine is well-conceived, ensuring stable and reliable operation, minimal vibration, low noise, and ease of use and maintenance.
2. The cylinder body components adopt a structure without mating oil pans, reducing assembly complexities and minimizing sealing surfaces.
3. Alarm systems are in place to indicate compression medium leaks, enhancing the overall reliability of the machine.
4. An integrated oil pump station addresses the issue of oil leakage that was present in externally-mounted compressors.
5. High level of automation ensures the equipment’s safe operation.
6. The entire equipment is consolidated CHINAMFG a single skid base, facilitating transportation, installation, and management of the equipment.
WZ Type Diaphragm Compressor
1. Compression of High-Purity Gases.
2. Lower Maintenance Rate.
3. Well-Performing Oil Pump System.
4. Diaphragm and Oil Pressure Alarms.
5. Favorable Cooling Conditions for the Compressor.
6. Compact and Reasonably Designed Overall Structure.

Applications

Project Case

 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support, Video Technical Support
Warranty: 1 Year
Principle: Displacement Compressor
Application: High Back Pressure Type
Performance: Low Noise
Mute: Mute
Samples:
US$ 6500/Unit
1 Unit(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Is the Fuel Efficiency of Gas Air Compressors?

The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:

1. Engine Design and Size:

The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.

2. Load Capacity and Usage Patterns:

The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.

3. Maintenance and Tuning:

Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.

4. Operating Conditions:

The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.

5. Fuel Type:

The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.

6. Operator Skills and Practices:

The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.

It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.

Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.

air compressor

Can Gas Air Compressors Be Used in Agriculture?

Yes, gas air compressors can be used in various agricultural applications. Here’s a detailed explanation:

1. Pneumatic Tools and Equipment:

Gas air compressors can power a wide range of pneumatic tools and equipment used in agriculture. These tools include pneumatic drills, impact wrenches, nail guns, staplers, and pneumatic pumps. Gas air compressors provide the necessary compressed air to operate these tools, making various tasks more efficient and convenient on the farm.

2. Irrigation Systems:

Gas air compressors can be used to power irrigation systems in agriculture. They can supply compressed air to operate pneumatic valves, which control the flow of water in irrigation networks. Gas air compressors ensure reliable and efficient operation of irrigation systems, facilitating the distribution of water to crops in a controlled manner.

3. Grain Handling and Storage:

Air compressors play a vital role in grain handling and storage facilities. They are used to power aeration systems that provide airflow to grains stored in silos or bins. Aeration helps control the temperature and moisture levels, preventing spoilage and maintaining grain quality. Gas air compressors provide the airflow necessary for effective aeration in grain storage operations.

4. Cleaning and Maintenance:

In agriculture, gas air compressors are commonly used for cleaning and maintenance tasks. They can power air blowers or air guns to remove dust, debris, or chaff from machinery, equipment, or storage areas. Gas air compressors provide a high-pressure stream of compressed air, facilitating efficient cleaning and maintenance operations.

5. Livestock Operations:

Gas air compressors find applications in livestock operations as well. They can power pneumatic equipment used for animal care, such as pneumatic nail guns for building or repairing livestock enclosures, pneumatic pumps for water distribution, or pneumatic tools for general maintenance tasks.

6. Portable and Versatile:

Gas air compressors are often portable and can be easily transported around the farm, allowing flexibility in agricultural operations. Their versatility makes them suitable for various tasks, from powering tools and equipment in the field to providing compressed air for maintenance or cleaning in different farm locations.

7. Remote Locations:

In agricultural settings where access to electricity may be limited, gas air compressors offer a reliable alternative. They can be powered by gasoline or diesel engines, providing compressed air even in remote areas without electrical infrastructure.

8. Considerations:

When using gas air compressors in agriculture, it is essential to consider factors such as compressor size, capacity, and maintenance requirements. Selecting the right compressor based on the specific needs of the agricultural applications ensures optimal performance and efficiency.

In summary, gas air compressors have various applications in agriculture. They can power pneumatic tools and equipment, operate irrigation systems, facilitate grain handling and storage, assist in cleaning and maintenance tasks, support livestock operations, and offer portability and versatility. Gas air compressors contribute to increased efficiency, convenience, and productivity in agricultural operations.

air compressor

What Safety Precautions Should Be Taken When Operating Gas Air Compressors?

Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:

1. Read and Follow the Manufacturer’s Instructions:

Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.

2. Provide Adequate Ventilation:

Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.

3. Wear Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.

4. Perform Regular Maintenance:

Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.

5. Preventive Measures for Fuel Handling:

If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:

  • Store fuel in approved containers and in well-ventilated areas away from ignition sources.
  • Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
  • Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
  • Never smoke or use open flames near the compressor or fuel storage areas.

6. Use Proper Electrical Connections:

If the gas air compressor requires electrical power, follow these electrical safety precautions:

  • Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
  • Avoid using extension cords unless recommended by the manufacturer.
  • Inspect electrical cords and plugs for damage before use.
  • Do not overload electrical circuits or use improper voltage sources.

7. Secure the Compressor:

Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.

8. Familiarize Yourself with Emergency Procedures:

Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.

It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.

China Professional 99.999%Purity High Pressure Hydrogen Air Diaphragm Compressor for Electronics   with Hot sellingChina Professional 99.999%Purity High Pressure Hydrogen Air Diaphragm Compressor for Electronics   with Hot selling
editor by CX 2024-04-09