Product Description
Diaphragm Compressor 100% purity no leakage Oil-free Oxygen Booster Compressor
The diaphragm compressor booster is a special structure of the volume-type compressor with high compression ratio, good leak tightness, compressed gas without lubricating oil and other CHINAMFG impurities contaminated features, So it’s suitable for high purity compression, rare, valuable, inflammable, explosive, toxic, harmful, corrosive, and high pressure gas
Advantages of Diaphragm compressor:
1. Oil-free compression due to the hermetic separation between gas and oil chamber.
2. Abrasion-free compression due to static seals in the gas stream
3. Automatic shutdown in case of a diaphragm failure prevents damage
4. High Compression Ratios- Discharge pressure up to 1000bar.
5. Contamination Free Compression
6. Corrosion Resistance
7. High Reliability
As a displacement compressor with special, diaphragm compressor is characterized by large compression ratio, good sealing performance, and that the compress air will not be polluted by lubricant or other CHINAMFG impurities.Therefore diaphragm compressor is applicable to compress high-purity, rare and precious, flammable and explosive, toxic and hazardous,corrosive and high pressure gases.
Keepwin diaphragm compressors consist of 4 types that are Z, V, L and D type.The exhaust pressure ranges from 1.3 to 100 Mpa. The products are widely used in the industries of national defense, scientific research, petrochemical, nuclear power, parmaceutical, food-stuff and gas separation.
Inquiry to us!
Note:for the other customizing process gas compressor, please kindly send below information to our factory to calculate the producing cost for your item.
Clients’ inquiries should contain related parameters
A. The gas compression medium
B. Gas composition? or the gas purity?
C. The flow rate: _____Nm3/hr
D. Inlet pressure: _____ Bar (gauge pressure or absolute pressure)
E. Discharge pressure: _____ Bar (gauge pressure or absolute pressure)
F. Inlet temperature
G.Discharge temperature
H. Cooling water temperature as well as other technical requirement.
Technical Paramter of Oil Free Diaphragm Compressor
| GZ type Diaphragm Compressor Technical Parameters | |||||||||
| No. | Model | F.A.D (Nm3/min) | Inlet Pressure ( Mpa) |
Exhuast Pressure (Mpa) |
Power (KW) |
Speed r/min |
Dimension (L×W×H)mm |
N.W Weight (t) |
Voltage V |
| 1 | G2V-10/8-160 | 10 | 0.8 | 16 | 5.5 | 400 | 1550*900*1050 | 0.8 | 380 |
| 2 | G2V-5/3.5~150 | 5 | 0.35 | 15 | 5.5 | 400 | 1550*900*1050 | 0.8 | 380 |
| 3 | G2V-10/4~320 | 10 | 0.4 | 32 | 5.5 | 430 | 1650*850*1250 | 0.8 | 380 |
| 4 | G3V-240/5~12 | 240 | 0.5 | 1.2 | 18.5 | 400 | 1860*1200*1585 | 2 | 380 |
| 5 | G3V-1200/75~83 | 1200 | 7.5 | 8.3 | 18.5 | 400 | 1780*1050*1750 | 1.8 | 380 |
| 6 | G3V-80/13~150 | 80 | 1~1.5 | 15 | 22 | 330 | 2400*1350*1465 | 2.1 | 380 |
| 7 | G3V-30/5~315 | 30 | 0.5 | 31.5 | 15 | 400 | 2571*955*1455 | 1.8 | 380 |
| 8 | G3V-80/7~150 | 80 | 0.7 | 15 | 22 | 400 | 2302*1385*1444 | 2.5 | 380 |
| 9 | G2V-25/6~150 | 25 | 0.6 | 15 | 7.5 | 400 | 1500*775*1075 | 0.8 | 380 |
| 10 | G2.5V-10/160 | 10 | Normal | 16 | 7.5 | 400 | 1650*1571*1400 | 0.95 | 380 |
| 11 | G2.5V-20/1~160 | 20 | 0.1 | 16 | 11 | 400 | 1650*1571*1400 | 0.95 | 380 |
| 12 | G2.5V-16/2.5~160 | 16 | 0.25 | 16 | 7.5 | 400 | 1650*1571*1400 | 0.95 | 380 |
| 13 | G3V-100/24~125 | 100 | 2.4 | 12.5 | 22 | 400 | 2160*1250*1500 | 1.8 | 380 |
| 14 | G4V-220/99-349 | 220 | 7.0~25 | 34.9 | 37 | 400 | 2492*1840*1610 | 3.2 | 380 |
| 15 | G2Z-45/150~350 | 45 | 10~20 | 35 | 7.5 | 400 | 1610*790*1380 | 0.55 | 380 |
| 16 | G2Z-5/30~400 | 5 | 3 | 40 | 5.5 | 400 | 1560*790*1470 | 0.55 | 380 |
| 17 | G2.5Z-30/32~170 | 30 | 3.2 | 17 | 7.5 | 400 | 1550*650*1530 | 0.7 | 380 |
| 18 | G3Z-600/75~83 | 600 | 7.5 | 8.3 | 11 | 400 | 1780*1050*1750 | 1.3 | 380 |
| 19 | G3Z-85/100~350 | 85 | 5~25 | 35 | 18.5 | 400 | 1900*1240*1760 | 1.6 | 380 |
| 20 | G3Z-150/150~350 | 150 | 15 | 35 | 18.5 | 400 | 1780*1050*1750 | 1.8 | 380 |
| 21 | G2.5Z-40/7~30 | 40 | 0.7 | 3 | 7.5 | 400 | 1653*1372*1470 | 0.9 | 380 |
| 22 | G2.5Z-100/20~35 | 100 | 2 | 3.5 | 5.5 | 400 | 1330*750*1530 | 0.9 | 380 |
| 23 | GV3-110/8~150 | 110 | 0.8 | 15 | 30 | 400 | 2370*1458*1630 | 3 | 380 |
| 24 | G3V-150/3.5~30 | 150 | 0.35~0.55 | 3 | 30 | 400 | 2543*1835*2036 | 3.21 | 380 |
| 25 | G3V-60/0.38~9.3 | 60 | 0.038 | 0.93 | 15 | 400 | 2030*1520*1750 | 72 | 380 |
Main technical data
Cylinder
All the cylinders comprise upper plate, diaphragms, and cylinder body etc. The diaphragms are clamped between the cylinder cover and cylinder body. The cylinder cover and cylinder body each has a concave recess hollowed out in their contacting faces. The gas cylinder is formed between cylinder cover concave recess and diaphragms. Both suction valve and discharge valve are fitted on the upper plate. Among of them, the discharge valve is located on the center of the upper plate. The evenly located small oil holes are on the cylinder body to deliver the oil pressure inside the oil cylinder to the bottom of diaphragms (each diaphragm compressor’s cylinder has 3 piece diaphragm.)
Pressure Regulating Valve
The oil pressure of oil cylinder is regulated by the tension of the valve spring.In case the oil pressure is higher than the regulated value, turn the regulating bolt counter-clockwise to loosen the spring tension, but turn the regulating bolt clockwise to tighten the spring, when the oil pressure is lower than the regulated value. When the oil pressure meets the required value, the regulating bolt must be locked with a lock-nut. The oil pressure of the oil cylinder shall always be higher than the discharge pressure by 15~20%. But the oil and gas differential pressure shall not be lower than 0.3MPa or higher than 1.5MPa.
Cooler
The cooler structure is the double-wall pipe type. The circular space between the outer and inner pipe is the cooling water passage and the inner pipe is the gas passage. Normally the water inlet port is at the lower side and the water outlet port is at the upper side. The flow direction of cooling water and gas is on the contrary.
Oil Pressure Measuring Device
The measuring device of oil cylinder discharge pressure consists of shock-proof pressure gauge, check valve and unloading valve. The case of the pressure gauge is totally airproof and filled with damping liquid. The inner devices of gauge is immersed in the liquid, which makes the pressure gauge hands stable through the function of the viscosity of damping liquid. The unloading valve is fitted under the gauge to discharge the remained air in the oil pipeline and to unload the oil pressure gauge. Also the check valve connecting with oil cylinder through pipeline is fitted under the unloading valve.
Oil pipes
Oil pipes consist of lube oil pipe and oil pressure secure system.
The lubrication for the driving device adopts gear oil pump circulation pressure lubricating. The lube oil stored in the frame oil tank enters into the gear oil pump after being filtered and is pressed into the oil holes in the crankshaft through the gear oil pump to lubricate the crankshaft friction surface. At the same time, part of the lube oil reaches the crosshead pin and crosshead along the oil holes in the connecting rod to lubricate the friction surface. The oil pressure of gear oil pump shall be kept between 0.3~0.5Mpa, and the bearings at the 2 ends of crankshaft is splash lubricated.
Oil pressure secure system consists of oil compensating pipe, pressure-measuring pipe and oil return pipe. The oil output from the oil compensating pump will supplement oil for compressor cylinders through the oil compensating pipe and the excess oil returns to the crankcase through the pressure-regulating valve.
FAQ
Q1: What’s your delivery time?
A: Generally CHINAMFG with 20-30 days, Reciprocating compressor & diaphragm high pressure gas comrpessor with 12-20weeks to customize producing.
Q2: How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary.
Q3: How long could your air compressor be used?
A: Generally, more than 10 years.
Q4: Can you do OEM for us?
A: Yes, of course. We have around 2 decades OEM experience.And also we can do ODM for you.
Q5: What’s payment term?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, Trade Assurance and etc. Also we could accept USD, RMB, GBP, Euro and other currency.
Q6: How about your customer service?
A: 24 hours on-line service available. 48hours problem sovled promise.
Q7: How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service.
Q8. Are you factory?
A4: Absolutely! You have touched the primary sources of Air /Gas Compressor. We are factory.
How to contact with us?
Send your Inquiry Details in the Below, or Click “Send inquiry to supplier” to check more other Gas Compressor machine equipment!
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Type: | Volumetric Filling Machine |
|---|---|
| Automatic Grade: | Automatic |
| Material Type: | Gas |
| Filling Valve Head: | Multi-Head |
| Feed Cylinder Structure: | Multi-Room Feeding |
| Dosing Device: | Capacity Cup |
| Samples: |
US$ 18888/Piece
1 Piece(Min.Order) | |
|---|
| Customization: |
Available
|
|
|---|
.webp)
Can Gas Air Compressors Be Used for Well Drilling?
Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:
1. Air Drilling Method:
Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.
2. Benefits of Gas Air Compressors:
Gas air compressors offer several advantages for well drilling:
- Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
- Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
- Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
- Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.
3. Compressor Selection:
When selecting a gas air compressor for well drilling, several factors should be considered:
- Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
- Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
- Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.
4. Safety Considerations:
It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.
5. Other Considerations:
While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.
In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.
.webp)
How Do You Transport Gas Air Compressors to Different Job Sites?
Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:
1. Equipment Size and Weight:
The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.
2. Transportation Modes:
Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:
- Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
- Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
- Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.
3. Securing and Protection:
It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.
4. Permits and Regulations:
Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.
5. Route Planning:
Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.
6. Equipment Inspection and Maintenance:
Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.
In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.
.webp)
What Fuels Are Commonly Used in Gas Air Compressors?
Gas air compressors can be powered by various fuels depending on the specific model and design. The choice of fuel depends on factors such as availability, cost, convenience, and environmental considerations. Here’s a detailed explanation of the fuels commonly used in gas air compressors:
1. Gasoline:
Gasoline is a widely used fuel in gas air compressors, particularly in portable models. Gasoline-powered compressors are popular due to the widespread availability of gasoline and the convenience of refueling. Gasoline engines are generally easy to start, and gasoline is relatively affordable in many regions. However, gasoline-powered compressors may emit more exhaust emissions compared to some other fuel options.
2. Diesel:
Diesel fuel is another common choice for gas air compressors, especially in larger industrial models. Diesel engines are known for their efficiency and durability, making them suitable for heavy-duty applications. Diesel fuel is often more cost-effective than gasoline, and diesel-powered compressors typically offer better fuel efficiency and longer runtime. Diesel compressors are commonly used in construction sites, mining operations, and other industrial settings.
3. Natural Gas:
Natural gas is a clean-burning fuel option for gas air compressors. It is a popular choice in areas where natural gas infrastructure is readily available. Natural gas compressors are often used in natural gas processing plants, pipeline operations, and other applications where natural gas is abundant. Natural gas-powered compressors offer lower emissions compared to gasoline or diesel, making them environmentally friendly.
4. Propane:
Propane, also known as liquefied petroleum gas (LPG), is commonly used as a fuel in gas air compressors. Propane-powered compressors are popular in construction, agriculture, and other industries where propane is used for various applications. Propane is stored in portable tanks, making it convenient for use in portable compressors. Propane-powered compressors are known for their clean combustion, low emissions, and easy availability.
5. Biogas:
In specific applications, gas air compressors can be fueled by biogas, which is produced from the decomposition of organic matter such as agricultural waste, food waste, or wastewater. Biogas compressors are used in biogas production facilities, landfills, and other settings where biogas is generated and utilized as a renewable energy source. The use of biogas as a fuel in compressors contributes to sustainability and reduces dependence on fossil fuels.
It’s important to note that the availability and suitability of these fuel options may vary depending on the region, infrastructure, and specific application requirements. When selecting a gas air compressor, it’s crucial to consider the compatibility of the compressor with the available fuel sources and to follow the manufacturer’s guidelines regarding fuel selection, storage, and safety precautions.


editor by CX 2024-04-02